Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
飞机液压系统流量负载模拟器的变速积分PI控制
欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇
1.浙江大学 流体动力与机电系统国家重点试验室,浙江 杭州 310027;
2. 航空机电系统综合航空科技重点实验室,江苏 南京 211100
Integral variable PI control on flow load simulator of aircraft hydraulic system
OUYANG Xiao-ping, ZHAO Tian-fei, LI Feng, YANG Shang-bao, ZHU Ying, YANG Hua-yong
1. State Key Laboratory of Fluid Power and mechatronic system, Zhejiang University, Hangzhou 310027,China; 2. Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing 211100, China
 全文: PDF(1578 KB)   HTML
摘要:

为了抑制压力波动,对完整飞行剖面下的液压系统工作状态进行分析.针对飞机液压系统提出流量负载模拟器原理,设计新型变速积分PI控制器,建立系统数学模型,确定各参数取值,开展数值仿真和试验研究,指出该流量负载模拟器的优缺点.仿真和试验结果均表明,在完整飞行剖面下,液压系统的可用压力在20.4 MPa以上,液压系统稳定可靠.相比于增量式PI控制器,采用变速积分PI控制器的压力波动至少减小了40%.

Abstract: The working condition of an aircraft hydraulic system during the full flight phases was analyzed to reduce pressure fluctuation. The principle of flow load simulator  was proposed for aircraft hydraulic system and the new variable integral PI controller was brought forward.The mathematic models of flow load simulator system were established and the value of each parameter was defined. Both the numerical simulation and test investigation were conducted, also the pros and cons of the simulator were pointed out.The simulation and test results show that during the full flight phases,the available pressure of an aircraft hydraulic system is always above 20.4 MPa, which means that the flow capacity can meet the demand.The pressure fluctuation amplitude of the system with the developed PI controller is reduced by more than 40% compared to the traditional PI controller.
出版日期: 2017-06-11
CLC:  TH 137.7  
基金资助:

国家自然科学基金资助项目(51675473);浙江省重点科技创新团队(2013TD01).

作者简介: 作者简介: 欧阳小平(1974—),男,教授,博士,从事流体传动与控制研究. ORCID: 0000-0002-2090-7123. E-mail: ouyangxp@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.06.008.

OUYANG Xiao-ping, ZHAO Tian-fei, LI Feng, YANG Shang-bao, ZHU Ying, YANG Hua-yong. Integral variable PI control on flow load simulator of aircraft hydraulic system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.06.008.

参考文献(References):
[1] SHANG Y X,JIAO Z X,YAO N. Influence of aerocraft actuator on ultimate performance of hydraulic load simulator [C] ∥ International Conference on Fluid Power and
Mechatronics. Beijing: IEEE, 2011: 850856.
[2] 杨华勇,丁斐,欧阳小平,等.大型客机液压能源系统[J].中国机械工程, 2009,20(18): 2152-2159.
YANG Hua-yong,DING Fei,OUYANG Xiao-ping,et al.Hydraulic power systems for trunk line aircrafts [J]. China Mechanical Engineering,2009,20(18): 2152-2159.
[3] PEI R,YUAN Z,JIANG H.Study on flow/pressure simulation subsystem for aircraft hydraulic energy system based on Fuzzy-PID control [C] ∥ International Conference on
Electronic Measurement and Instruments. Chengdu: IEEE,2011: 181-185.
[4] 夏鹤鸣,王鸿鑫.基于AMESim飞机液压能源系统用户可用压力仿真计算[J].机械设计与制造工程, 2014,43(7): 20-23.
XIA He-ming,WANG Hong-xin.The simulation of pressure available to the user in aircraft hydraulic energy system based on AMESim [J].Machine Design and Manufacturing
Engineering,2014,43(7): 20-23.
[5] 谭路遥.某型民用飞机液压原理试验系统设计及关键部件仿真分析[D].杭州:浙江大学,2014.
TAN Lu-yao.Development of the hydraulic system test rig(HSTR) for the civil aircraft and simulation of its key components [D].Hangzhou: Zhejiang University,2014.
[6] 欧阳小平,李锋,朱莹,等.重载航空负载模拟器非线性最优前馈补偿控制[J].航空学报,2016,37(2): 669-679.
OUYANG Xiao-ping,LI Feng,ZHU Yi,et al.Nonlinear optimal feedforward compensation controller for heavy load aviation load simulator [J].Acta Aeronautica et Astronautica
Sinica,2016,37(2): 669-679.
[7] 袁朝辉,马科,江辉军,等.某型飞机液压能源系统原理验证试验系统设计[J].测控技术,2010,29(6): 48-53.
YUAN Chao-hui,MA Ke,JIANG Hui-jun,et al.Design of principle verification test system with a certain type of aircraft hydraulic energy systems [J].Measurement and Control
Technology,2010,29(6): 48-53.
[8] AHN K K,TRUONG D Q,THANH T Q,et al.Online self-tuning fuzzy proportional—integral —derivative control for hydraulic load simulator [J].Proceedings of the Institution of
Mechanical Engineers-Part I: Journal of Systems and Control Engineering,2008,222(2): 81-95.
[9] FAN B Q,LEE K M,OUYANG X P,et al.Soft-switchable dual-PI controlled axial loading system for high-speed EMU axle-box bearing test rig [J]. IEEE Transactions on
Industrial Electronics,2015,62(12): 7370-7381.
[10] 谷俊杰,张艳娟,赵兴楼.非线性PID控制器在主蒸汽温度控制中的应用[J].热力发电,2009,38(7): 92-95.
GU Jun-jie,ZHANH Yan-juan,ZHAO Xing-lou.Application of non-linear PID controller in the main steam temperature control [J].Power Equipment,2009,38(7): 92-95.
[11] CHERN T L,WU Y C.Integral variable structure control approach for robot manipulators [J].Control Theory and Applications,IEE Proceedings,1992,139(2):161-166.
[12] 欧阳小平,杨华勇,郭生荣,等.现代飞机液压技术[M].杭州:浙江大学出版社,2016, 1-24.
[13] 刘星.飞行原理[M].北京:科学出版社,2011: 68-90.
[14] 莫波,雷明,曹泛.恒功率恒压泵变量机构的调节原理[J].液压与气动,2002,2002(6): 5-6.
MO Bo,LEI Ming,CAO Fan.A principle to adjust the volume control of constant power and constant pressure pump [J].Chinese Hydraulics and Pneumatics,2002,2002(6): 5-6.
[15] 李艳军.飞机液压传动与控制[M].北京:科学出版社,2009: 65-85.
[16] 许秀,黄金华.新型连续变速积分控制算法研究及应用[J].工业仪表与自动化装置,2006,2006(6): 40-42.
XU Xiu,HUANG Jin-hua.Study and application ofa new PID algorithmcontinues speed change integral [J].Industrial Instrumentation and Automation,2006,2006(6): 40-42.
[17] 肖磊,谢菊芳.一种基于PLC的PID流量控制设计 [J].湖北大学学报:自然科学版,2007,29(1) : 44-46.
XIAO Lei,XIE Ju-fang.Design of PID flow control based on PLC [J].Journal of Hubei University: Natural Science,2007,29(1): 44-46.
[18] 李锋.飞机液压系统负载模拟研究[D].杭州:浙江大学,2016.
LI Feng.Research on load simulation of the aircraft hydraulic system [D].Hangzhou: Zhejiang University,2016.
[19] 高铁红,曲云霞.控制工程基础:第2版[M].北京:中国计量出版社,2016: 82-89.
[1] 赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248.
[2] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[3] 欧阳小平,李磊,方旭,杨华勇. 双压力航空柱塞泵压力切换动态特性[J]. 浙江大学学报(工学版), 2016, 50(3): 397-404.