Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (6): 1240-1248    DOI: 10.3785/j.issn.1008-973X.2020.06.022
机械工程     
剖面浮标“浮星”可变浮力系统性能研究
赵艳龙1,2,3(),李醒飞1,2,3,杨少波1,2,3,*(),李洪宇3,4,徐佳毅1,2,3,林越5
1. 天津大学 精密测试技术及仪器国家重点实验室,天津 300072
2. 青岛海洋科学与技术试点国家实验室,山东 青岛 266237
3. 天津大学 青岛海洋技术研究院,山东 青岛 266237
4. 山东科技大学海洋科学与工程学院,山东 青岛 266590
5. 中国船级社青岛分社,山东 青岛 266071
Variable buoyancy system performance for profile buoy “Fuxing”
Yan-long ZHAO1,2,3(),Xing-fei LI1,2,3,Shao-bo YANG1,2,3,*(),Hong-yu LI3,4,Jia-yi XU1,2,3,Yue LIN5
1. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
2. Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
3. Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266237, China
4. College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
5. CCS Qingdao Branch, Qingdao 266071, China
 全文: PDF(1550 KB)   HTML
摘要:

为了提高柱塞泵的容积效率,针对可变浮力系统(VBS)中内油箱处于真空环境下的特殊应用工况,基于柱塞泵进油口压力与液压油饱和蒸汽压的关系,建立柱塞泵进油口压力数学模型,分析弹簧刚度、吸油管路直径和压载舱真空度对柱塞泵容积效率的影响;结合AMESim软件,重点分析VBS排油和回油的流量特性;为了验证仿真模型和计算结果的准确性,搭建VBS性能测试平台. 结果表明:当柱塞泵进油口压力低于液压油饱和蒸汽压时,容易发生气穴现象,柱塞泵的容积效率会明显下降;通过调节弹簧刚度、吸油管路直径和压载舱真空度等参数的取值范围,使进油口压力满足设计要求,可以提高柱塞泵的容积效率,降低剖面浮标的运行能耗,从而提高剖面浮标的续航能力.

关键词: 浮标可变浮力系统 (VBS)容积效率进油口压力饱和蒸汽压AMESim软件    
Abstract:

A mathematical model of piston pump inlet pressure was established to analyze the influence of the spring stiffness, pipeline diameter and ballast tank vacuum degree on the volume efficiency, based on the relationship between plunger pump inlet pressure and hydraulic oil saturation vapor pressure, in order to improve the pump volumetric efficiency under the special application condition of variable buoyancy system (VBS), of which the inner tank is in vacuum environment. Combined with AMESim software, the flow characteristics of oil discharge and oil return of VBS were analyzed emphatically. A test platform of VBS was built to verify the accuracy of simulation model and calculation results. Result show that it is prone to cavitation when the inlet pressure of the plunger pump is lower than the saturated vapor pressure of the hydraulic oil, which causes the volumetric efficiency of the plunger pump to decrease significantly. By adjusting the value range of spring stiffness, oil suction pipe diameter and ballast tank vacuum, etc., the inlet pressure can meet the design requirements, which helps to improve the volumetric efficiency of the plunger pump, to reduce the operating energy consumption of the profile buoy, thereby to improve the endurance of the profile buoy.

Key words: buoy    variable buoyancy system (VBS)    volumetric efficiency    inlet pressure    saturated vapor pressure    AMESim software
收稿日期: 2019-05-13 出版日期: 2020-07-06
CLC:  TH 137.7  
基金资助: 精密测试技术及仪器国家重点实验室开放基金资助项目 (pilab1906);山东省重点研发计划资助项目(2019GHY112072,2019GHY112051);天津市自然科学基金重点资助项目(16JCZDJC30100);天津大学精密测试技术及仪器国家重点实验室青年教师科学研究基金资助项目 (Pilq1702)
通讯作者: 杨少波     E-mail: zhaoyanlong22@163.com;yangskyle@tju.edu.cn
作者简介: 赵艳龙(1993—),男,硕士生,从事海洋工程设备研究. orcid.org/0000-0003-4564-4654. E-mail: zhaoyanlong22@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵艳龙
李醒飞
杨少波
李洪宇
徐佳毅
林越

引用本文:

赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248.

Yan-long ZHAO,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Jia-yi XU,Yue LIN. Variable buoyancy system performance for profile buoy “Fuxing”. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1240-1248.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.022        http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1240

图 1  剖面浮标浮力调节系统(VBS)原理图
图 2  浮标的剖面运动过程示意图
图 3  活塞式内油缸结构示意图
图 4  囊式内油缸结构示意图
图 5  柱塞泵进油口压力受力分析图
几何形状 k1 几何形状 k1
90°弯头 0.20 圆滑入口 0.05
45°弯头 0.15 锐边出口 1.00
三通接头 0.90 圆滑出口 1.00
锐边入口 0.50 ? ?
表 1  不同几何元素的损失系数
图 6  剖面浮标浮力驱动系统AMESim仿真模型
参数 符号 数值 单位
液压油密度 $\rho $ ${\rm{850}}$ ${\rm{ kg}}/{{\rm{m}}^{\rm{3}}}$
运动黏度 $v$ 10 ${\rm{m}}{{\rm{m}}^{\rm{2}}}/{\rm{s}}$
吸油管路长度 $l$ ${\rm{0}}{\rm{.3}}$ ${\rm{m}}$
回油管路长度 $l'$ ${\rm{0}}{\rm{.8}}$ ${\rm{m}}$
内油缸直径 ${D_0}$ ${\rm{102}}$ ${\rm{mm}}$
管路直径 ${D_1}$ ${\rm{3}}{\rm{.05}}$ ${\rm{mm}}$
活塞质量 $m$ ${\rm{0}}{\rm{.7}}$ ${\rm{kg}}$
摩擦力 ${F_{\rm{f}}}$ ${\rm{10}}$ ${\rm{N}}$
柱塞泵排量 vg $0.1$ ${\rm{mL}}/{\rm{r}}$
饱和蒸汽压 ${p_3}$ $ - {\rm{40}}$ ${\rm{kPa}}$
电机电压 $U$ ${\rm{24}}$ ${\rm{V}}$
电枢绕组电感 $L$ ${\rm{0}}{\rm{.082}}$ ${\rm{mH}}$
电枢绕组电阻 $R$ $0.299$ ${\rm{\Omega }}$
单向阀开启压力 ${p_4}$ ${\rm{0}}{\rm{.1}}$ ${\rm{MPa}}$
表 2  VBS仿真模型参数设置
图 7  不同真空度下柱塞泵排量随时间的变化
图 8  不同真空度下柱塞泵进油口压力随时间变化
图 9  不同真空度下液压油的气体体积分数
图 10  排油过程中吸油管路雷诺数
图 11  当压载舱真空度为−12.7 kPa时的回油总油量和回油压差
图 12  柱塞泵转矩和排量随压力的变化曲线
图 13  不同吸油管径下柱塞泵排量随时间的变化
图 14  不同吸油管径下柱塞泵进油口压力随时间的变化
设备名称 设备参数
溢流阀 型号:HIP-10RV,额定压力:68.9 MPa
流量计 型号: ${\rm{CX}} - {\rm{M5}} - {\rm{SS}}$
测量范围:5~1 000 mL
二位二通球阀 额定压力: ${\rm{68}}{\rm{.9\;MPa}}$
压力表 量程:0~69 MPa
表 3  VBS性能测试平台设备相关参数
图 15  剖面浮标VBS性能测试平台原理图
图 16  剖面浮标VBS性能测试平台实物图
图 17  不同压载舱真空度下柱塞泵排量测试结果对比
图 18  当压载舱真空度为−12.7 kPa时回油总流量随时间变化的试验值与仿真值对比
图 19  不同海水压力下的柱塞泵排量
1 陈鹿, 潘彬彬, 曹正良, 等 自动剖面浮标研究现状及展望[J]. 海洋技术学报, 2017, 36 (2): 1- 9
CHEN Lu, PAN Bin-bin, CAO Zheng-liang, et al Research status and prospects of automatic profiling floats[J]. Ocean Technology, 2017, 36 (2): 1- 9
2 王世明, 吴爱平 液压技术在ARGO浮标中的应用[J]. 流体传动与控制, 2010, (1): 50- 53
WANG Shi-ming, WU Ai-ping Application of hydraulics in ARGO buoyage[J]. Fluid Power Transmission and Control, 2010, (1): 50- 53
doi: 10.3969/j.issn.1672-8904.2010.01.016
3 WANG J, ZHANG H, WANG Y, et al. Dynamic simulation of buoyancy engine of underwater glider based on experimentation [C] // OCEANS 2017-Aberdeen. Aberdeen: IEEE, 2017: 1-5.
4 ZHENG R, WANG Y, WU J G AUV buoyancy regulating device design and simulation analysis[J]. Applied Mechanics and Materials, 2014, 468 (2014): 150- 157
5 RANGANATHAN T, ARAVAZHI S, MISHRA S, et al. Design and analysis of a novel underwater glider-RoBuoy [C] // 2018 IEEE International Conference on Robotics and Automation. Brisbane: ICRA, 2018: 2089-2094.
6 KANG C, ZHOU C. Development of a hydraulic buoyance adjustment module for underwater robots [C] // OCEANS 2016-Shanghai. Shanghai: IEEE, 2016: 1-7.
7 ZHENG R, WANG Y, WU J AUV buoyancy regulating device design and simulation analysis[J]. Applied Mechanics and Materials, 2014, 468: 150- 157
8 杨燕, 孙秀军, 王延辉 深海水下滑翔器浮力驱动系统设计[J]. 海洋技术学报, 2016, 35 (2): 9- 14
YANG Yan, SUN Xiu-jun, WANG Yan-hui Design of a buoyancy engine for deep sea gliders[J]. Ocean Technology, 2016, 35 (2): 9- 14
9 王佳. AUV浮力调节系统设计及控制策略研究[D]. 天津: 天津大学, 2018.
WANG Jia. Design of the variable buoyancy system of AUV and research of the control strategy[D]. Tianjin: Tianjin University, 2018.
10 RANGANATHAN T, SINGH V, NAIR R, et al Design of a controllable variable buoyancy module and its performance analysis as a cascaded system for selective underwater deployment[J]. Journal of Engineering for the Maritime Environment, 2017, 231 (4): 888- 901
11 杨海, 刘雁集 水下滑翔机浮力调节系统研制[J]. 中国舰船研究, 2018, 13 (6): 128- 133
YANG Hai, LIU Yan-ji Development of buoyancy regulating system for underwater glider[J]. Chinese Journal of Ship Research, 2018, 13 (6): 128- 133
12 武建国, 王雨, 郑荣 基于浮力调节的液压系统动态特性仿真[J]. 海洋技术学报, 2014, 33 (3): 6- 11
WU Jian-guo, WANG Yu, ZHENG Rong Simulation of the dynamic characteristics of the hydraulic system based on variable buoyancy system[J]. Ocean Technology, 2014, 33 (3): 6- 11
13 武建国, 石凯, 刘健, 等 6 000 m AUV “潜龙一号” 浮力调节系统开发及试验研究[J]. 海洋技术学报, 2014, 33 (5): 1- 7
WU Jian-guo, SHI Kai, LIU Jian, et al Development and experimental research on the variable buoyancy system for the 6 000 m rated class "Qianlong I" AUV[J]. Ocean Technology, 2014, 33 (5): 1- 7
14 SUN Q, ZHENG R, REN F, et al. The design and analysis of variable buoyancy system of AUV [C] // 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems. Wuhan: ACIRS, 2017: 259-263.
15 赵伟, 杨灿军, 陈鹰 水下滑翔机浮力调节系统设计及动态性能研究[J]. 浙江大学学报: 工学版, 2009, 43 (10): 1772- 1776
ZHAO Wei, YANG Can-jun, CHEN Ying Design and dynamic performance study of buoyancy control system for water glider[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (10): 1772- 1776
16 范双双, 杨灿军, 彭时林, 等 水下滑翔机关键承压系统设计与试验研究[J]. 浙江大学学报: 工学版, 2014, 48 (4): 633- 640
FAN Shuang-shuang, YANG Can-jun, PENG Shi-lin, et al Design and experimental research on key pressure subsystems of underwater glider[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 633- 640
17 ASAKAWA K, WATARI K, OHUCHI H, et al Buoyancy engine developed for underwater glider[J]. Advanced Robotics, 2016, 30 (1): 41- 49
doi: 10.1080/01691864.2015.1102647
18 王延辉, 张宏伟, 武建国 新型温差能驱动水下滑翔器系统设计[J]. 船舶工程, 2009, 31 (3): 51- 54
WANG Yan-hui, ZHANG Hong-wei, WU Jian-guo Design of a new type underwater glider propelled by temperature difference energy[J]. Ship Engineering, 2009, 31 (3): 51- 54
doi: 10.3969/j.issn.1000-6982.2009.03.015
19 NOAH M. Hydraulic control systems[M]. New Jersey: Wiley, 2005.
[1] 林越,李洪宇,文艺成,邹彦超,杨少波,李醒飞. 深海自持式剖面浮标浮力变化规律[J]. 浙江大学学报(工学版), 2020, 54(7): 1440-1448.