Please wait a minute...
浙江大学学报(工学版)
机械工程     
油液混合动力挖掘机势能回收及能量管理策略
赵鹏宇,陈英龙,周华,杨华勇
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Potential energy recovery and energy management strategy of hydraulic hybrid excavator
ZHAO Peng yu, CHEN Ying long, ZHOU Hua, YANG Hua yong
State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1497 KB)   HTML
摘要:

针对油液混合动力挖掘机能量损失较大、能量回收效率偏低等问题,提出基于复合液压缸和蓄能器的混合动力挖掘机机械臂势能回收系统.复合液压缸由有杆腔、无杆腔和配重腔3个容腔组成.配重腔与蓄能器相连,提供机械臂负载平均值;有杆腔和无杆腔分别与泵/马达的2个进出油口相连构成闭式系统,通过泵/马达向有杆腔或无杆腔提供高压油液从而驱动机械臂动作.通过仿真分析验证系统的节能效果;建立系统数学模型,分析系统控制性能和液压元件之间的动、静态关系及能量损耗;提出基于瞬时优化控制的能量管理策略.通过仿真及数学模型的分析结果表明,势能回收系统可以提高机械臂能量回收效率,减小能量损耗,发动机最大输出功率可以减小27%,通过能量管理策略可进一步将发动机最大输出功率减小44%.

Abstract:

A new hydraulic hybrid excavator driving system was proposed concerning on the issues that the loss of energy was too large and the energy recovery efficiency was not high enough. The driving system used complex cylinders and accumulators to recover the potential energy of mechanical arms and load of the excavator. The complex cylinders were composed by three chambers, including chamber with pistonrod, chamber without pistonrod and counterweight chamber. The counterweight chambers were connected to accumulators, which provide average load force. The chambers with and without pistonrod were connected to entrance and outlet of the pump/motors, respectively, forming pump control systems. The hydraulic pump/motors charged chambers with pistonrod or chambers without pistonrod to drive the action of mechanical arms. The energy conservation effect was verified by simulation. The mathematical model was established to analysis the control performance, the dynamic and static relations among hydraulic components and the energy loss of the system. In addition, the energy management strategy based on instantaneous optimal control strategies was proposed. According to the simulation result and the analysis of mathematical model, the energy recovery efficiency of the mechanical arm is improved and the energy loss is reduced. The maximum output power of the engine can be reduced by 27%, and can be further reduced by 44% using energy management strategy.

出版日期: 2017-01-14
:     
基金资助:

浙江省重点科技创新团队自主设计资助项目(2013TD01).

通讯作者: 周华,男,教授,博导. ORCID: 0000000183753291.     E-mail: hzhou@sfp.zju.edu.cn
作者简介: 赵鹏宇(1990-),男,博士生,从事流体传动与控制等研究. ORCID: 0000000205142548. E-mail:zpy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.012.

ZHAO Peng yu, CHEN Ying long, ZHOU Hua, YANG Hua yong. Potential energy recovery and energy management strategy of hydraulic hybrid excavator. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.012        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/893

[1] TAYMAZ I, BENLI M. Emissions and fuel economy for a hybrid vehicle [J]. Fuel, 2014, 115(1):812-817.
[2] SALMASI F R. Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends [J]. IEEE Transactions on Vehicular Technology, 2007, 56(5):2393-2404.
[3] 祝超群. 混合动力汽车控制策略研究[D]. 兰州理工大学, 2008.
ZHU Chaoqun. Research on control strategy for a Parallel hybrid electric vehicle [D]. Lanzhou: Lanzhou University of Technology, 2008.
[4] RYDBERG K E. Energy efficient hydraulic hybrid drives [C] ∥ The 11th Scandinavian International Conference on Fluid Power. Linkping: Linkping University, 2009: 114.
[5] RAMAKRISHNAN R, HIREMATH S S, SINGAPERUMAL M. Theoretical investigations on the effect of system parameters in series hydraulic hybrid system with hydrostatic regenerative braking [J]. Journal of Mechanical Science & Technology, 2012, 26(5):1321-1331.
[6] 罗念宁, 张健, 姜继海. 液压混合动力技术[J]. 液压气动与密封, 2012, 32(2):81-85.
LUO Nianning, ZHANG Jian, JIANG Jihai. Hydraulic hybrid technology [J]. Hydraulics Pneumatics & Seals, 2012, 32(2):81-85.
[7] 张彦廷, 王庆丰, 肖清. 混合动力液压挖掘机液压马达能量回收的仿真及试验[J]. 机械工程学报, 2007, 43(8):218-223.
ZHANG Yanting, WANG Qingfeng, XIAO Qing. Simulation and experimental research on energy regeneration with hydraulic motor for hybrid drive excavator [J]. Chinese Journal of Mechanical Engineering, 2007, 43(8):218-223.
[8] 闫丽娟, 孙辉, 刘伟,等. 行走工程机械油液混合动力技术[J]. 吉林大学学报:工学版, 2014, 44(2):364-368.
YAN Lijuan, SUN Hui, LIU Wei, et al. Hydraulic hybrid technology of moving construction machinery [J]. Journal of Jilin University:Engineering and Technology Edition, 2014, 44(2):364-368.
[9] HIPPALGAONKAR R, IVANTYSYNOVA M. A seriesparallel hydraulic hybrid miniexcavator with displacement controlled actuators [C] ∥ The 13th Scandinavian International Conference on Fluid Power. Linkping: Linkping University, 2013: 31-42.
[10]SUGIMURA K, MURRENHOFF H. Hybrid load sensing – displacement controlled architecture for excavators [C] ∥ The Fourteenth Scandinavian International Conference on Fluid Power. Tampere: Tampere University of Technology, 2015, 667-677.
[11] ERKKIL M, BAUER F, FELD D. Universal energy storage and recovery system – a novel approach for hydraulic hybrid [C] ∥ The 13th Scandinavian International Conference on Fluid Power. Linkping: Linkping University, 2013: 45-52.
[12] SHEN W, JIANG J, SU X, et al. Control strategy analysis of the hydraulic hybrid excavator [J]. Journal of the Franklin Institute, 2014, 352:541-561.
[13] ACHTEN P, BRINK T V D, POTMA J, et al. A fourquadrant hydraulic transformer for hybrid vehicles [C] ∥ The 11th Scandinavian International Conference on Fluid Power. Linkping: Linkping University, 2009: 1-15.
[14] XIAO Y, GUAN C, LAI X. Research on the design and control strategy for a flowcouplingbased hydraulic hybrid excavator [J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2014, 228:1675-1687.
[15] LIN T, WANG Q, HU B, et al. Research on the energy regeneration systems for hybrid hydraulic excavators [J]. Automation in Construction, 2010, 19(8):10161026.
[16] LINJAMA M, VIHTANEN H P, SIPOLA A, et al. Secondary controlled multichamber hydraulic cylinder [C] ∥ The 11th Scandinavian International Conference on Fluid Power. Linkping: Linkping University, 2009: 114.
[17] STAUCH C, SCHULZ F, BRUCK P, et al. Energy recovery using a digital pistontype accumulator [C] ∥ Proceedings of the Fifth Workshop on Digital Fluid Power. Tampere: Tampere University of Technology, 2012: 57-73.
[18] SPRENGEL M, IVANTYSYNOVA M. Investigation and energetic analysis of a novel hydraulic hybrid architecture for onroad vehicles [C] ∥ The 13th Scandinavian International Conference on Fluid Power, SICFP2013. Linkping:Linkping University, 2013: 87-98.
[19] QUAN Z, QUAN L, ZHANG J. Review of energy efficient direct pump controlled cylinder electrohydraulic technology [J]. Renewable & Sustainable Energy Reviews, 2014, 35: 336-346.
[20] TIKKANEN S, TOMMILA H. Hybrid pump drive [C] ∥ The Fourteenth Scandinavian International Conference on Fluid Power. Tampere: Tampere University of Technology, 2015, 667-677.
[21] PAGANELLI G, ERCOLE G, BRAHMA A, et al. General supervisory control policy for the energy optimization of chargesustaining hybrid electric vehicles [J]. Jsae Review, 2001, 22(01):511-518.

[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[14] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[15] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.