Please wait a minute...
浙江大学学报(工学版)
能源工程     
直线压缩机电声转换特性的实验
李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓
1. 中国科学院 低温工程学重点实验室, 北京 100190; 
2. 中国科学院大学, 北京 100049
Experimental investigation on electroacoustic conversion characteristic of linear compressor
LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang
1.Key Laboratory of Cryogenics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2716 KB)   HTML
摘要:

针对声学RC负载法研究直线压缩机电声转换特性时存在的阻抗调节范围小、阻抗调节困难等问题,提出电机负载的方法.该方法是采用一台直线电机作为被测压缩机的负载,通过改变该直线电机的外接电阻和等效电感实现不同的负载阻抗,可以方便地对直线压缩机的电声转换特性进行研究.结果表明,在平均压力为6 MPa,工作频率为60 Hz,压缩机阻抗幅值为2.06×107 Pa·s/m3,阻抗相角为-17°时,压缩机效率可达84.5 %.结果还表明,改变膨胀电机的外接电阻或等效电感时,压缩机不仅都能达到较广的阻抗范围,而且电声转换效率都能在某一阻抗幅值和相角值时达到最佳.

Abstract:
 Motor load approach was proposed in order to solve the problems of limited impedance range and inconvenient impedance control in using RC load method to test the compressor performance. The method adopted an expansion motor as the load of the tested compressor. The electroacoustic conversion characteristic of the compressor under different load impedance was analyzed by changing the external resistance and equivalent inductance of the motor, The compressor can obtain an electroacoustic efficiency of 84.5 % at an impedance magnitude of 2.06×107 Pa·s/m3 and a phase angle of-17°. The operation conditions are 6 MPa helium and 60 Hz working frequency, respectively. The compressor can achieve a wide range of impedance range as well as an optimum efficiency at a certain impedance by changing the external resistance or equivalent inductance of the expansion motor.
出版日期: 2016-08-01
:     
基金资助:

国家自然科学基金资助项目(51476183);北京市自然科学基金资助项目(3132034).

通讯作者: 吴张华,男,副研究员.ORCID: 0000-0001-9142-7621.     E-mail: zhhwoo@mail.ipc.ac.cn
作者简介: 李林玉(1990—),女,研究生,从事热声低温制冷机等研究.ORCID: 0000-0001-8680-0575. E-mail: li_linyu@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.08.015.

LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang.

Experimental investigation on electroacoustic conversion characteristic of linear compressor
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.08.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.08.015        http://www.zjujournals.com/eng/CN/Y2016/V50/I8/1529

[1] HUANG Yun, LUO Ercang, DAI Wei, et al. A traveling wave thermoacoustic refrigerator within room temperature range [C]∥ Cryocoolers 13. New Orleans: Springer US, 2005: 189-194.
[2] QIU Limin, CAO Qiang, ZHI Xiaoqin, et al. A threestage Stirling pulse tube cryocooler operating below the critical point of helium4 [J]. Cryogenics, 2011 (51): 609-612.
[3] NAST T, OLSON J, CHAMPAGNE P, et al. Development of a 4.5 K pulse tube cryocooler for superconducting electronics [C]∥ Advances in Cryogenic Engineering. Chattanooga: AIP, 2008(53): 881-886.
[4] MARQUARDT E D, RADEBAUGH R. Pulse tube oxygen liquefier [C]∥ Advances in Cryogenic Engineering. Tucson: IOP, 2000(45): 457-464.
[5] TWARD E, CHAN C K, RAAB J, et al. High efficiency pulse tube cooler [C]∥ Cryocoolers 11. New York: KLUWER ACADEMIC, 2001: 163-167.
[6] KARANDIKAR A, BERCHOWITZ D. Low cost small cryocoolers for commercial applications [C]∥ Advances in Cryogenic Engineering 41. Columbus: PLENUM PRESS, 1996: 1561-1568.
[7] WILSON K B, FRALICK C C, GEDEON D R, et al. Sunpower’s CPT60 pulse tube cryocooler [C]∥ Cryocoolers14. Annapolis: ICC Press, 2007: 123-132.
[8] ZIA J. A commercial pulse tube cryocooler with 200 W refrigeration at 80 K [C]∥ Cryocoolers 13. New Orleans: ICC Press, 2005: 165-171.
[9] TROLLIER T, TANCHON J, BUQUET J, et al. Design of a large heat lift 40 to 80 K pulse tube cryocooler for space applications [C]∥ Cryocoolers 14. Annapolis: ICC Press, 2007: 75-82.
[10] GROEP W V D, MULLI J, WILLEMS D, et al. The development of a new generation of miniature longlife linear coolers [C]∥ Cryocoolers 16. Atlanta: ICC Press, 2011: 11119.
[11] VEPRIK A, VILENCHIK H, RIABZEV S, et al. Microminiature linear split Stirling cryogenic cooler for portable infrared applications [C]∥ Cryocoolers 14. Annapolis: ICC Press, 2007: 105-115.
[12] VEPRIK A, ZEHTZER S, VILENCHIK H, et al. Microminiature split Stirling linear cryocooler [C]∥ Advances in Cryogenic Engineering 55. Tucson: Springer US,2009: 363370.
[13] 颜鹏达,斯特林型两级脉管制冷机的理论与实验研究[D].杭州:浙江大学, 2009.
YAN Pengda, Theoretical and experimental research on a twostage Stirlingtype pulse tube cryocooler [D], Hangzhou: Zhejiang University, 2009.
[14] JI Gaolin, WU Yinong, Cooling system for space application [C]∥ Cryocoolers 10. Monterey CA : KLUWER ACADEMIC,1999: 787-790.
[15] WANG Xiaotao, ZHANG Yibing, LI Haibing, et al. A high efficiency hybrid stirlingpulse tube cryocooler [J]. AIP Advances, 2015, 5(3): 037-127.
[16] FUSCO A M, WARD W C, SWIFT G W. Twosensor power measurements in lossy ducts [J]. Journal of the Acoustical Society of America, 1992, 91: 2229-2235.
[17] OLSON J R, SWIFT G W. A loaded thermoacoustic engine [J]. Journal of the Acoustical Society of America, 1995, 98: 2690-2693.
[18] ZHOU S, MATSUBARA Y. Experimental research of thermoacoustic prime mover [J]. Cryogenics, 1998, 38: 813-822.
[19] GARDNER D L, SWIFT G W. A cascade thermoacoustic engine [J]. Journal of the Acoustical Society of America, 2003, 114: 1905-1919.
[20] BAO Rui, CHEN Guobang, TANG Ke, et al. Effect of RC load on performance of thermoacoustic engine [J]. Cryogenics, 2006,46: 666-671.
[21] WANG Longyi, ZHOU Wenjie, GAN Zhihua. Performance testing of linear compressors with RC approach [C]∥ Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering ConferenceCEC. Spokane: AIP Publishing, 2012, 1434(1):1624-1631.
[22] SWIFT G W. Thermoacoustics: a unifying perspective for some engines and refrigerators [M]. New York: AIP Press: 2002: 234-238.
[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[7] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[8] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[9] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[10] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[11] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[12] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[13] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[14] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[15] 黄家辉, 冯冬芹. 广义收益信息物理系统脆弱性评估方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1119-1125.