Please wait a minute...
浙江大学学报(工学版)
机械与电气工程     
金属空心球梯度泡沫结构抗冲击特性仿真与优化
杨姝, 刘国平, 亓昌, 王大志
1.大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024;
2.上海汽车集团股份有限公司 技术中心,上海 201804
Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure
YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi
1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024,China;
2. SAIC Motor Technique Center,Shanghai 201804, China
 全文: PDF(1657 KB)   HTML
摘要:

基于有限元方法,研究不同冲击速度下面心立方排布的金属空心球(FCC-MHS)梯度泡沫结构的缓冲吸能特性.以比吸能和远端应力为目标对象,分析梯度排列次序和梯度数对结构抗冲击性能的影响.采用径向基函数方法构建FCC-MHS梯度泡沫冲击代理模型且进行多目标优化.结果显示,在冲击波效应不明显时,梯度排列次序和梯度数对FCC-MHS泡沫抗冲击性能影响有限, FCC-MHS梯度泡沫的抗冲击性能与均质FCC-MHS泡沫接近;在波效应明显的冲击速度下,梯度数多且呈负梯度排列的FCC-MHS泡沫抗冲击性能最优.优化设计能使FCC-MHS泡沫的抗冲击性能更优.

Abstract:

Based on the finite element method, crashworthiness of a face center cubic metal hollow sphere (FCC-MHS) graded foam structure under various impact velocities were investigated. Specific energy absorption and distal end stress were taken as performance indexes, and the influence of density gradient rank and number on the structure crashworthiness were analyzed. The replaced model for crashworthiness prediction of the FCC-MHS foam was established by using radial basis functions, The multi-objective design optimization was performed. Rresults shows that when the FCC-MHS foam subjects a shock load with less obvious wave effect, the gradient rank and number have limited influence on its crashworthiness. At that time, the performance of the graded FCC-MHS foam is similar to that of the uniform density foam. When it subjects to impact with obvious wave effect, the graded FCC-MHS foam with more gradient number and anti-gradient rank shows the best performance. Multi-objective design optimization of the graded FCC-MHS foam structure can improve its crashworthiness.

出版日期: 2016-08-01
:     
基金资助:

国家自然科学基金资助项目(51475069, 51475070);辽宁省自然科学基金资助项目(2015021020).

通讯作者: 亓昌,男,教授. ORCID: 0000-0002-3792-6566.     E-mail: qichang@dlut.edu.cn
作者简介: 杨姝(1978—),女,副教授,从事汽车结构分析等研究. ORCID: 0000-0003-2316-9485.E-mail: yangshu@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.08.023.

YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.08.023.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.08.023        http://www.zjujournals.com/eng/CN/Y2016/V50/I8/1593

[1] SANDER W S, GIBSON L J. Mechanics of hollow sphere foams [J]. Materials Science and Engineering: A, 2002, 347: 70-85.
[2] GAO Z Y, YU T X, ZHAO H. Mechanical behavior of metallic hollow sphere materials: experimental study [J]. Journal of Aerospace Engineering, 2008, 21(4): 206-216.
[3] KARAGIOZOVA D, YU T X, GAO Z Y. Stressstrain relationship for metal hollow sphere materials as a function of their relative density [J]. Journal of Applied Mechanics, 2007, 74(5): 898-907.
[4] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. London: Cambridge University press, 1999.
[5] BRAVAIS A M.Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l’espace [J]. Journal of Ecole Polytechn, 1850, 19: 11-28.
[6] 黄旭涛,严密.功能梯度材料:回顾与展望[J].材料科学与工程, 1997, 15(4): 35-38.
HUANG Xutao, YAN Mi. Review and prospects of functional gradient materials [J]. Materials Science and Engineering, 1997, 15(4): 35-38.
[7] 黄敬东,吴俊,王银平,等.梯度功能材料的研究评述[J].材料保护,2002, 35(12): 8-12.
HUANG Jingdong, WU Jun, WANG Yinping, et al. Functionally gradient materials [J]. Materials Protection, 2002, 35(12): 8-12.
[8] GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4): 979-982.
[9] KISHORE, SHANKAR R, SANKARAN S. Gradient syntactic foams: Tensile strength, modulus and fractographic features [J]. Materials Science and Engineering: A, 2005, 412(1): 153-158.
[10] BROTHERS A H, DUNAND D C. Mechanical properties of a densitygraded replicated aluminum foam [J]. Materials Science and Engineering: A, 2008, 489(1): 439-443.
[11] RUAN H H, GAO Z Y, YU T X. Crushing of thinwalled spheres and sphere arrays [J]. International Journal of Mechanical Sciences, 2006, 48(2): 117-133.
[12] KARAGIOZOVA D, YU T X, GAO Z Y. Modelling of MHS cellular solid in large strains [J]. International Journal of Mechanical Sciences, 2006, 48(11): 1273-1286.
[13] DONG X L, GAO Z Y, YU T X. Dynamic crushing of thinwalled spheres: An experimental study [J]. International Journal of Impact Engineering, 2008, 35(8): 717-726.
[14] GASSER S, PAUN F, BRECHET Y. Finite elements computation for the elastic properties of a regular stacking of hollow spheres [J]. Materials Science and Engineering: A, 2004, 379(1): 240-244.
[15] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering: A, 2013, 561(3): 352-361.
[16] MARCADON V. Mechanical modelling of the creep behaviour of HollowSphere Structures [J]. Computational Materials Science, 2011, 50(10): 3005-3015.
[17] ZENG H B, PATTOFATTO S, ZHAO H, et al. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680-688.
[18] LIU Y, WU H X, WANG B. Gradient design of metal hollow sphere (MHS) foams with density gradients [J]. Composites Part B: Engineering, 2012, 43(3): 1346-1352.
[19] GIBSON L J. Mechanical behavior of metallic foams [J]. Annual Review of Materials Science, 2000, 30(1): 191-227.
[20] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part II‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230.
[21] 穆雪峰,姚卫星,余雄庆,etal.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005, 22(5): 608-612.
MU Xuefeng, YANG Weixing, YU Xiongqing, et al. A survey of surrogate models used in MDO [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612.

 
[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[8] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[9] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[10] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[11] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[12] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[13] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[14] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[15] 黄家辉, 冯冬芹. 广义收益信息物理系统脆弱性评估方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1119-1125.