Please wait a minute...
浙江大学学报(工学版)
航空航天技术     
咽式进气道/等直隔离段的反压特性
辜天来,张帅,郑耀
浙江大学 航空航天学院,浙江 杭州 310027
Back pressure characteristics of jaws inlet with constant-area isolator
GU Tian lai, ZHANG Shuai, ZHENG Yao
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1944 KB)   HTML
摘要:

对带等直隔离段的咽式进气道进行Ma 5飞行条件下流场的数值模拟,对比起动状态反压对内部复杂的流场结构及性能参数的影响,分析高反压引起的进气道不起动现象与机理.研究表明,起动状态下隔离段中激波串主要在俯仰方向上发展且不对称性明显,激波串出现初期进气道/隔离段的性能参数变化最快,超声速主流受到附面层挤压偏向隔离段底部和中心轴线的偏航两侧.高反压引起咽式进气道不起动后,分离结构被限制在俯仰压缩段,流量损失主要发生在侧向唇口,偏航压缩段内均为亚声速、高温高压气流.由于高内收缩比和几何构型影响,仅采用降低反压的方式难以实现再起动.

Abstract:

The jaws inlet with a constant-area isolator was numerically analyzed under conditions of Ma 5 free stream and changing back pressures. Complicated flow field structures in starting and unstarting states were obtained and compared. Effects of the back pressure on performance of the inlet/isolator model were analyzed. Results show that the shock train is asymmetrical and it primarily develops in the pitching direction when the jaws inlet works in starting states. Performance of the inlet/isolator model decreases fastest at the early stage of occurrence of the shock train. Affected by the boundary layer development, supersonic flows in the constant-area isolator are crowded towards the bottom and two sides of the yaw direction. When the jaws inlet unstarts owing to high back pressures, the separation structure locates totally in the pitching compression section.  The loss of inflow mass primarily bleeds off from the lateral lip. Flows in the yaw compression section are subsonic with high static temperature and high static pressure. It is hard to achieve restarting by only decreasing the back pressure because of the high contraction ratio and the unique geometry of the jaws inlet.

出版日期: 2016-07-23
:     
基金资助:

浙江省自然科学基金资助项目(LY13E060002) .

通讯作者: 张帅, 男, 副教授. ORCID: 0000-0002-9775-193X.      E-mail: shuaizhang@zju.edu.cn
作者简介: 辜天来(1990-), 男, 博士生, 从事超燃冲压发动机设计的研究. ORCID: 0000-0002-4924-0027. E-mail: gutianlai@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.07.027.

GU Tian lai, ZHANG Shuai, ZHENG Yao. Back pressure characteristics of jaws inlet with constant-area isolator. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.07.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.07.027        http://www.zjujournals.com/eng/CN/Y2016/V50/I7/1418

[1] SAIED E, TREXLER C A, AUSLENDER A H, et al. Experimental investigation of inletcombustion isolators for a dualmode scramjet at a Mach number of 4 [R]. America: NASA,  1995.
[2] REINARTZ B U, HERRMANN C D, BALLMANN J. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment [J]. Journal of Propulsion and Power, 2003, 19(5): 868-875.
[3] WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow [J]. AIAA Journal, 2009, 47(6): 1528-1542.
[4] SRIKANT S, WAGNER J L, VALDIVIA A, et al. Unstart detection in a simplifiedgeometry hypersonic inletisolator flow [J]. Journal of Propulsion and Power, 2010, 26(5): 1059-1071.
[5] KOO H, RAMAN V. Largeeddy simulation of a supersonic inletisolator [J]. AIAA Journal, 2012, 50(7): 1596-1613.
[6] 袁化成, 梁德旺, 郭荣伟, 等. 反压作用下等直隔离段性能估算[J]. 航空动力学报, 2009, 24(11): 2421-2428.
YUAN Huacheng, LIANG Dewang, GUO Rongwei, et al. Predicting method for the performance of constant area isolator under back pressure [J]. Journal of Aerospace Power, 2009, 24(11): 2421-2428.
[7] 张堃元, 王成鹏, 杨建军, 等. 带高超进气道的隔离段流动特性[J]. 推进技术, 2002, 23(4): 311-314.
ZHANG Kunyuan, WANG Chengpeng, YANG Jianjun, et al. Investigation of flow in isolator of hypersonic inlet [J]. Journal of Propulsion Technology, 2002, 23(4): 311-314.
[8] SU W Y, ZHANG K Y. Backpressure effects on the hypersonic inletisolator pseudoshock motions [J]. Journal of Propulsion and Power, 2013, 29(6): 1391-1399.
[9] MALOMOLINA F J, GAITONDE D V, KUTSCHENREUTER P H, et al. Analysis of an innovative inward turning inlet with hydrocarbon fuel at Mach 7 [C]∥16th Annual Thermal and Fluids Analysis Workshop. Orlando: [s.n.], 2005.
[10] MALOMOLINA F J, GAITONDE D V, EBRAHIMI H B, et al. Analysis of an innovative inward turning inlet using an AirJP8 combustion mixture at Mach 7 [J]. AIAA Paper 063041, 2006.
[11] 王成鹏, 董昊, 程克明. 咽式高超声速进气道试验与计算研究[J]. 空气动力学学报, 2012, 30(6): 761-766.
WANG Chengpeng, DONG Hao, CHENG Keming. Experiment and numerical study on hypersonic jaws inlet [J]. Acta Aerodynamic Sinica, 2012, 30(6): 761-766.
[12] 董昊, 王成鹏, 程克明. 高超声速咽式进气道起动特性研究[J]. 实验流体力学, 2013, 27(5): 49-54.
DONG Hao, WANG Chengpeng, CHENG Keming. Experimental investigation of hypersonic jaws inlet starting characteristics [J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 49-54.
[13] 辜天来, 付磊, 张帅, 等. 咽式进气道设计工况下性能初步分析[J]. 航空动力学报, 2014, 29(9): 2070-2078.
GU Tianlai, FU Lei, ZHANG Shuai, et al. Preliminary analysis of jaws inlet performance under design conditions [J]. Journal of Aerospace Power, 2014, 29(9): 2070-2078.
[14] 李博, 袁化成, 梁德旺. 高超声速进气道等直隔离段的反压特性研究[J]. 宇航学报, 2008, 29(1): 78-83.
LI Bo, YUAN Huacheng, LIANG Dewang. Research on characteristics of back pressure performance for constant area isolator of a hypersonic inlet [J]. Journal of Astronautics, 2008, 29(1): 78-83.
[15] 钱翼稷. 空气动力学[M]. 北京: 航空航天大学出版社, 2004.
[16] KAZUYASU M, YOSHIAKI M, HEUYDONG K. Shock train and pseudoshock phenomena in internal gas flows [J]. Progress in Aerospace Sciences, 1999, 35(1): 33100.
[17] BRANDON M, KARTHIK D, SANJIVA K L. Largeeddy simulations of a normal shock train in a constantarea isolator [J]. AIAA Journal, 2014, 52(3): 539-558.
[18] ROBIN L K, JAMES F D, MIRCO G. Unsteadiness characteristics and pressure distribution of an oblique shock train [J]. AIAA paper 151519, 2015.
[19] 梁德旺, 李博. 高超声速进气道隔离段反压的前传模式及最大工作反压[J]. 空气动力学学报, 2006, 24(4): 444-460.
LIANG Dewang, LI Bo. Back pressure propagation mode and maximum working back pressure of hypersonic isolator inlet [J]. Acta Aerodynamic Sinica, 2006, 24(4): 444-460.
[20] 李博, 梁德旺. 高超声速进气道隔离段反压引起不起动计算[J]. 推进技术, 2006, 27(5): 431-435.
LI Bo, LIANG Dewang. Calculation of unstarted flow in hypersonic inletisolator with high back pressure [J]. Journal of Propulsion Technology, 2006, 27(5): 431-435.
[21] VAN WIE D M, KWOK F T, WALSH R F. Starting characteristics of supersonic inlets[J]. AIAA Paper 962914, 1996.
[22] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008.
WANG Yi. Investigation on hypersonic inlet starting characteristics [D]. Changsha: National University of Defense Technology, 2008.

[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[14] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[15] 黄家辉, 冯冬芹. 广义收益信息物理系统脆弱性评估方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1119-1125.