Please wait a minute...
浙江大学学报(工学版)
土木工程、建筑工程     
基于FastICA算法的物理漏损流量分析模型
郑成志, 高金良, 何文杰
1.哈尔滨工业大学 市政环境工程学院,黑龙江 哈尔滨 150090; 2.天津市自来水集团有限公司,天津 300040
Leakage discharge analysis model based on FastICA algorithm
ZHENG Cheng zhi, GAO Jin liang, HE Wen jie
1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China;
2. Tianjin Water Works Group Co. Ltd, Tianjin 300040, China
 全文: PDF(2543 KB)   HTML
摘要:

为解决传统供水管网物理漏损流量分析模型模拟准确度不高、无法体现物理漏损流量与水头关系的不确定性等问题,基于快速独立成分分析(FastICA)算法构建物理漏损流量分析模型. 该模型将供水总流量划分为用水流量和物理漏损流量,并视为2个源信号.以供水总流量和管网入口处水头2个参数为输入参数,通过源信号分离获得2个流量的波形信息,通过比较相关系数确定源信号的顺序,通过水平衡方程确定物理漏损流量的真实尺度,实现物理漏损流量在时间序列上的模拟. 该模型输入参数易于获取且有效避免了物理漏损流量与水头关系的复杂性,在单水源供水管网中模拟准确度较高,并且在供水管网水力模型节点流量分配中得到了较好的应用.

Abstract:

A new leakage discharge analysis model based on fast independent component analysis (FastICA) algorithm was established in order to solve the problems of the traditional leakage discharge analysis models, such as low simulation accuracy, incapability of reflecting the uncertain relationship between leakage discharge and presssure head and so on. The model divided total water supply flow into actual consumed water flow and leakage discharge and considered them as two source signals. In the model, the total water supply flow and pressure head at the entrance were considered as two input parameters. The waveform information of two flows were obtained by separating source signals. The order of the source signals was determined by comparing the correlation coefficients. The real amplitude of leakage discharge was solved out according to the flow balance equation. Therefore, the leakage discharge was simulated in time series. For this model, the input parameters are easily getparms. It can effectively avoid the complexity of the relationship between leakage discharge and head pressure. Thus the simulation accuracy is high in the water distribution system with one entrance only. The model has been preferably applied in the node demand distribution of one water distribution network’s hydraulic model.

出版日期: 2016-06-01
:     
基金资助:

广东省教育部产学研结合资助项目(重大专项)(2011A090200040);国家自然科学基金资助项目(51278148);欧盟第七框架“玛丽·居里行动”计划(PIRSESGA2012318985).

通讯作者: 高金良,男,副教授,博士.ORCID: 0000000266620187.     E-mail: gjl@hit.edu.cn
作者简介: 郑成志(1985—),男,博士生,从事供水管网模拟及其优化研究. ORCID: 0000000293002683. E-mail: buye3000@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.06.004.

ZHENG Cheng zhi, GAO Jin liang, HE Wen jie. Leakage discharge analysis model based on FastICA algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.06.004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.06.004        http://www.zjujournals.com/eng/CN/Y2016/V50/I6/1031

[1] THORNTON J, LAMBERT A. Progress in practical prediction of pressure: leakage, pressure: burst frequency and pressure: consumption relationships [C]∥ Proceedings of IWA Special ConferenceLeakage, Halifax: [s. n.], 2005: 12-14.
[2] FERRANTE M, MASSARI C, BRUNONE B, et al. Experimental evidence of hysteresis in the headdischarge relationship for a leak in a polyethylene pipe [J]. Journal of Hydraulic Engineering, 2010, 137(7):775-780.
[3] CASSA A M, VAN ZYL J E, LAUBSCHER R F. A numerical investigation into the effect of pressure on holes and cracks in water supply pipes [J]. Urban Water Journal, 2010, 7(2): 109-120.
[4] CASSA A M, VAN ZYL J E. Predicting the headarea slopes and leakage exponents of cracks in pipes [C]∥ Urban Water Management: Challenges and Oppurtunities11th International Conference on Computing and Control for the Water Industry, CCWI. Exeter: CCWI, 2011: 2.
[5] PAOLA F D, GIUGNI M. Leakages and pressure relations: an experimental research [J]. Drinking Water Engineering and Science Discussions, 2012, 5(1): 403-419.
[6] FERRANTE M. Experimental investigation of the effects of pipe material on the leak headdischarge relationship [J]. Journal of Hydraulic Engineering, 2012, 138(8): 736-743.
[7] JAUMOUILL E, PILLER O, VAN ZYL J E. Advantages of a hydraulic saintvenant type model with pressuredependent leakage [C]∥ Proceedings of the 10th Annual Water Distribution Systems Analysis Conference, WDSA. Kruger National Park: WDSA, 2009: 814-823.
[8] WU Z Y, BURROWS R, MOORCROFT J, et al. Pressuredependent leakage detection method compared with conventional techniques [J]. Water Distribution System Analysis, 2010: 1083-1092.
[9] WALSKI T, BEZTS W, POSLUSZNY E T, et al. Modeling leakage reduction through pressure control [J]. Journal of American Water Works Association, 2006, 98(4): 147-155.
[10] VAN ZYL J E, CLAYTON C R I. The effect of pressure on leakage in water distribution systems [J]. Proceedings of the Institution of Civil Engineers: Water Management, 2007, 160(2): 109-114.
[11] MENICONI S, BRUNONE B, FERRANTE M, et al. Numerical and experimental investigation of leaks in viscoelastic pressurized pipe flow [J]. Drinking Water Engineering and Science, 2013, 6(1): 1116.
[12] TABESH M, YEKTA A H A, BURROWS R. An integrated model to evaluate losses in water distribution systems [J]. Water Resources Management, 2009,23(3): 477-492.
[13] BURNELL D, RACE J. Water distribution systemsanalysis: patterns in supplypipe leakage [C]∥ Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000: Building Partnerships. Minneapolis: American Society of Civil Engineers, 2004: 104.
[14] WU Z Y, FARLEY M, TURTLE D, et al. Water Loss Reduction [M]. Pennsylvania: Bentley Institute Press, 2011: 32-57.
[15] 朱世泰. 城市供水管网模型校核参数的研究[D]. 广州:华南理工大学, 2014: 5-11.
ZHU Shitai. Study on calibrated parameters of urban water distribution system model [D]. Guangzhou: South China University of Technology, 2014: 5-11.
[16] CHEUNG P B, GIROL G V, ABE N, et al. Night flow analysis and modeling for leakage estimation in a water distribution system [C]∥ Integrating Water SystemsProceedings of the 10th International on Computing and Control for the Water Industry, CCWI 2009. Sheffield: CCWI, 2010: 509-513.
[17] 张冬,李淑慧,张俊杰.优化管网压力以降低管网漏损的研究[J]. 中国给水排水, 2014, 30(3): 59-61.
ZHANG Dong, LI Shuhui, ZHANG Junjie. Optimization of water distribution network pressure for educing leakage [J]. China Water and Wastewater, 2014, 30(3): 59-61.
[18] ALMANDOZ J, CABRERA E, ARREGUI F, et al. Leakage assessment through water distribution network simulation [J]. Journal of Water Resources Planning And Management, 2005, 131(6): 458-466.
[19] YUAN X, WANG C, JI F, et al. A magnetic flux leakage analysis model based on finite element neural network [J]. InsightNonDestructive Testing and Condition Monitoring, 2011, 53(9): 482-486.
[20] MASSARI C, FERRANTE M, BRUNONE B, et al. Is the leak headdischarge relationship in polyethylene pipes a bijective function? [J]. Journal of Hydraulic Research, 2012, 50(4): 409-417.
[21] 于先川, 胡丹. 盲源分离理论与应用[M]. 北京: 科学出版社, 2011: 17-52.
[22] 金羽晔, 李式巨, 王彦波, 等. CDMA 盲自适应独立分量多用户检测器[J]. 浙江大学学报: 工学版, 2008, 42(10): 1745-1750.
JIN Yute, LI Shiju, WANG Tanbo, et al. Independent component analysis based blind adaptive multiuserdetector for CDMA [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(10): 1745-1750.
[23] 周晓峰, 杨世锡.基于负熵最大化的机械振源半盲分离方法[J]. 浙江大学学报: 工学版, 2011, 45(5): 846-850.
ZHOU Xiaofeng, YANG Shixi. Semiblind sources separation of mechanical vibrations base on maximization of negentropy [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(5): 846-850.
[24] ALMANDOZ J, CABRERA E, ARREGUI F, et al. Leakage assessment through water distribution network simulation [J]. Journal of Water Resources Planning and Management, 2005, 131(6): 458-466.
[25] TABESH M, TANYIMBOH T T, BURROWS R. Headdriven simulation of water supply networks [J]. International Journal of Engineering, 2002, 15(1): 11-22.
[26] 顾军,胡显丹.基于FastICA 算法的敌我识别信号分选方法研究[J].舰船电子对抗, 2009, 32(5): 41-44.
HU Jun, HU Xiandan. Research into the sorting method of IFF signals based on fastICA algorithm [J]. Shipboard Electronic Countermeasure, 2009, 32(5):41-44.
[27] 蒋夕平, 吴凤凰, 蒋昱, 等. 基于 FastICA 算法的高光谱矿物丰度反演[J]. 吉林大学学报:地球科学版, 2013, 43(5): 1681-1686.
JIANG Xiping, WU Fenghuang, JIANG Yu, et al. Hyperspectral mineral abundance inversion based on FastICA algorithm [J]. Journal of Jilin University: Earth Science Edition, 2013, 43(5): 1681-1686.

[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[14] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[15] 黄家辉, 冯冬芹. 广义收益信息物理系统脆弱性评估方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1119-1125.