Please wait a minute...
浙江大学学报(工学版)
机械工程     
油液混合动力工程机械系统及控制策略研究综述
赵鹏宇,陈英龙,周华
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Overview of hydraulic hybrid engineering machinery system and control strategy
ZHAO Peng yu, CHEN Ying long, ZHOU Hua
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1628 KB)   HTML
摘要:

针对油液混合动力工程机械能量损失较大、能量回收效率偏低以及控制策略相对单一等问题,从混合动力系统液压原理和控制策略2个方面分析.将油液混合动力工程机械液压系统分为泵控液压系统、二次调节液压系统和复合结构液压系统3种形式,研究液压系统的设计思路和工作原理,将油液混合动力工程机械控制策略分为门限值控制策略、模糊控制策略和优化控制策略3类,分析适用工况,对比油电混合动力汽车控制策略与油液混合动力工程机械控制策略.油液混合动力工程机械的发展方向包括利用泵控系统代替阀控系统、开发储能元件、设计针对工程机械结构特点的控制策略以及控制目标多样化.

Abstract:

The latest research results were reviewed aiming at the problem of hydraulic hybrid engineering machinery, such as the huge loss of energy, low energy recovery efficiency, simple control strategy and so on. The organized research results could be divided into two parts (i) hydraulic principle design and (ii) control strategy selection, respectively. In the hydraulic principle design, three development directions were proposed, which consisted of pump control system, secondary regulation system and composite structure hydraulic system. The mentalities of the designing were studied, and the operating principles were analyzed. In the control strategy selection, three kinds of control strategies were summarized, including threshold control strategy, fuzzy logic control strategy and optimization based control strategy. The working conditions  were analyzed. Compare the control strategies of hybrid electric vehicles  with those of hydraulic hybrid machineries. According to the above, the development directions of hydraulic hybrid machinery were proposed, such as using pump control system to replace valve control system, developing new components to reduce the energy loss, designing specific control strategy and diversifying the control goal.

出版日期: 2016-09-18
:  TH 137  
基金资助:

 浙江省重点科技创新团队自主设计项目(2013TD01).

通讯作者: 周华,男,教授,博导. ORCID:0000 0001 8375 3291.     E-mail: hzhou@sfp.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵鹏宇,陈英龙,周华. 油液混合动力工程机械系统及控制策略研究综述[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.03.008.

ZHAO Peng yu, CHEN Ying long, ZHOU Hua. Overview of hydraulic hybrid engineering machinery system and control strategy. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.03.008.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.03.008        http://www.zjujournals.com/eng/CN/Y2016/V50/I3/449

[1] TAYMAZ I, BENLI M. Emissions and fuel economy for a hybrid vehicle [J]. Fuel, 2014, 115: 812817.
[2] SALMASI F R. Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends [J]. IEEE Transactions on Vehicular Technology, 2007, 56(5): 23932404.
[3] RYDBERG K E. Energy efficient hydraulic hybrid drives [C]∥ The 11th Scandinavian International Conference on Fluid Power. Linkping:SICFP, 2009: 114.
[4] RAMAKRISHNAN R, HIREMATH S S, SINGAPERUMAL M. Theoretical investigations on the effect of system parameters in series hydraulic hybrid system with hydrostatic regenerative braking [J]. Journal of Mechanical Science and Technology, 2012, 26(5): 13211331.
[5] 罗念宁, 张健, 姜继海. 液压混合动力技术[J]. 液压气动与密封, 2012, 32(2):8185.
LUO Nian ning, ZHANG Jian, JIANG Ji hai. Hydraulic hybrid technology [J]. Hydraulics Pneumatics and Seals, 2012, 32(2): 8185.
[6] MILLER J M. Propulsion systems for hybrid vehicles [M]. [S. l.]: IET Digital Library, 2010.
[7] 金涛涛. 混合动力传动系统建模及优化控制研究[D]. 北京:北京交通大学, 2014.
JIN Tao tao. Hybrid vehicle transmission system modeling and control optimization [D]. Beijing: Beijing Jiaotong University, 2014.
[8] DU Z, KAI L C, LI P Y, et al. Fuel economy comparisons of series, parallel and HMT hydraulic hybrid architectures [C] ∥ American Control Conference (ACC). Washington DC: IEEE, 2013: 59545959.
[9] SALMAN M, SCHOUTEN N J, KHEIR N A. Control strategies for parallel hybrid vehicles [C] ∥ American Control Conference. Chicago: IEEE, 2000: 524528.
[10] KIM C, NAMGOONG E, LEE S, et al. Fuel economy optimization for parallel hybrid vehicles with CVT [J]. Automotive Sector, 1999(1):337342.
[11] RASK E, DUOBA M, BUSCH L H. Recent hybrid electric vehicle trends and technologies [C] ∥ Vehicle Power and Propulsion Conference (VPPC). Chicago: IEEE, 2011: 16.
[12] 张彦廷, 王庆丰, 肖清. 混合动力液压挖掘机液压马达能量回收的仿真及试验[J]. 机械工程学报, 2007, 43(8):218223.
ZHANG Yan ting, WANG Qing feng, XIAO Qing. Simulation and experimental research on energy regeneration with hydraulic motor for hybrid drive excavator [J]. Chinese Journal of Mechanical Engineering, 2007, 43(8): 218223.
[13] 闫丽娟, 孙辉, 刘伟,等. 行走工程机械液压混合动力技术[J]. 吉林大学学报:工学版, 2014, 44(2):364368.
YAN Li juan, SUN Hui, LIU Wei, et al. Hydraulic hybrid technology of moving construction machinery [J]. Journal of Jilin University:Engineering and Technology Edition, 2014, 44(2): 364368.
[14] 徐绳武. 泵控系统在国外的发展[J]. 液压气动与密封, 2010, 30(3):14.
XU Sheng wu. Development of pump controlled system abroad [J]. Hydraulics Pneumatics and Seal, 2010, 30(3): 14.
[15] SUGIMURA K, MURRENHOFF H. Hybrid load sensing displacement controlled architecture for excavators [C] ∥ The 14th Scandinavian International Conference on Fluid Power. Tampere: Tampere University of Technology, 2015:665666.
[16] ZIMMERMAN J, HIPPALGAONKAR R, IVANTYSYNOVA M. Optimal control for the series parallel displacement controlled hydraulic hybrid excavator [C] ∥ Proceedings of the ASME 2011 Dynamic Systems and Control Conference. Arlington: ASME, 2011:129136.
[17] HIPPALGAONKAR R, IVANTYSYNOVA M. A series parallel hydraulic hybrid mini excavator with displacement controlled actuators [C] ∥ The 13th Scandinavian International Conference on Fluid Power.  Linkping:University, 2013:4552.
[18] ERKKIL M, BAUER F, FELD D. Universal energy storage and recovery system:a novel approach for hydraulic hybrid [C] ∥ The 13th Scandinavian International Conference on Fluid Power. Linkping:Linkping University, 2013:4552.
[19] TIKKANEN S, TOMMILA H. Hybrid pump drive [C] ∥ The Fourteenth Scandinavian International Conference on Fluid Power. Tampere: Tampere University of Technology, 2015:667677.
[20] BOEHM D, HOLLANDER C, LANDMANN T. Hybrid drivers in crawler excavators: concepts and solutions [C] ∥ Third Symposium on Hybrid Drive Systems for Mobile Machinery. Karlsruhe: Karlsruhe Institute of Technology, 2011:110.
[21] QUAN Z, QUAN L, ZHANG J. Review of energy efficient direct pump controlled cylinder electro hydraulic technology [J]. Renewable and Sustainable Energy Reviews, 2014, 35: 336346.
[22] NIKOLAUS H W. Antriebssystem mit hydrostatischer kraftübertragung patent anmeldung: P27399684 [P].1997 06 09.
[23] CHUMA O V, JAMES N A. Energy recovery and management in pressure coupled hydraulic hybrid bus using new hydraulic transformer and clean diesel combustion engine [C] ∥ The Seventh International Conference on Fluid Power Transmission and Control. Hangzhou: Zhejiang University, 2009: 632636.
[24] WERNDIN R, ACHTEN P, SANNELIUS M, et al. Efficiency performance and control aspects of a hydraulic transformer [C] ∥ Proceedings of the Sixth Scandinavian International Conference on Fluid Power.Tampere:Tampere University of Technology, 1999: 395407.
[25] MORENO M A, CARRION P A, PLANELLS P, et al. Measurement and improvement of the energy efficiency at pumping stations [J]. Biosystems Engineering, 2007, 98(4): 479486.
[26] 姜继海, 于安才, 沈伟. 基于CPR网络的全液压混合动力挖掘机[J]. 液压与气动, 2010(9):4449.
JIANG Ji hai, YU An cai, SHEN Wei. The review of full hydraulic hybrid excavator based on common pressure rail network [J]. Chinese Hydraulics and Pneumatics, 2010(9):4449.
[27] SHEN W, JIANG J, SU X, et al. Control strategy analysis of the hydraulic hybrid excavator [J]. Journal of the Franklin Institute, 2014, 352: 541561.
[28] 沈伟, 姜继海. 液压混合动力挖掘机的能量回收效率分析[J]. 华南理工大学学报:自然科学版, 2012, 40(1): 8287.
SHEN Wei, JIANG Ji hai. Analysis of energy recovery efficiency of hydraulic hybrid excavator [J]. Journal of South China University of Technology:Natural Science Edition, 2012, 40(1): 8287.
[29] 林述温, 花海燕. 一种挖掘机恒压网络二次调节液压系统及其能耗分析[J]. 中国工程机械学报, 2009, 1: 5257.
LIN Shu wen, HUA Hai yan. Constant pressure network readjustment hydraulic system design and energy consumption analysis for excavators [J]. Chinese Journal of Construction Machinery, 2009, 1: 5257.
[30] ACHTEN P, BRINK T V D, POTMA J, et al. A four quadrant hydraulic transformer for hybrid vehicles [C]∥ The 11th Scandinavian International Conference on Fluid Power. Linkping:SICFP, 2009: 115.
[31] SHEN W, JIANG J. Analysis and development of the hydraulic secondary regulation system based on the CPR [C] ∥ IEEE Transactions on Fluid Power and Mechatronics (FPM). Harbin: IEEE, 2011: 117122.
[32] LINJAMA M, HUOVA M, PIETOLA M, et al. Hydraulic hybrid actuator: theoretical aspects and solution alternatives [C] ∥ The Fourteenth Scandinavian International Conference on Fluid Power. Tampere: Tampere University of Technology, 2015:688698.
[33] XIAO Y, GUAN C, LAI X. Research on the design and control strategy for a flow coupling based hydraulic hybrid excavator [J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2014, 228: 16751687.
[34] ANDERSEN T O, PEDERSEN H C, HANSEN M R. Regeneration of potential energy in hydraulic forklift trucks [C]∥ The Sixth International Conference on Fluid Power Transmission and Control. Hangzhou: Zhejiang University, 2005: 302306.
[35] HUOVA M, LAAMANENE A, LINJAMA M. Energy efficiency of three chamber cylinder with digital valve system [J]. International Journal of Fluid Power, 2010, 12(3): 1522.
[36] STAUCH C, SCHULZ F, BRUCK P, et al. Energy recovery using a digital piston type accumulator [C] ∥ Proceedings of the Fifth Workshop on Digital Fluid Power. Tampere:Tampere University of Technology, 2012: 5773.
[37] HOFMAN T. Framework for combined control and design optimization of hybrid vehicle propulsion systems [D]. Eindhoven: Technische Universiteit Eindhoven, 2007.
[38] XIAO Q, WANG Q, ZHANG Y. Control strategies of power system in hybrid hydraulic excavator [J]. Automation in Construction, 2008, 17(4): 361367.
[39] CHEN C K, VU T V, HUNG C W. Control strategy development and optimization for a series hydraulic hybrid vehicle [J]. Engineering Letters, 2013, 21(2):101107.
[40] 林添良, 刘强. 液压混合动力挖掘机动力系统的参数匹配方法[J]. 上海交通大学学报, 2013, 47(5): 728733.
LIN Tian liang, LIU Qiang. Method of parameter matching for hydraulic hybrid system for excavators [J]. Journal of Shanghai Jiaotong University, 2013, 47(5): 728733.
[41] SUN H, JING J. Research on the system configuration and energy control strategy for parallel hydraulic hybrid loader [J]. Original Research Article Automation in Construction, 2010, 19(2): 213220.
[42] ZHANG C, LIU X, XIE F, et al. Control system modeling and simulation of parallel hydraulic hybrid heavy vehicle [C] ∥ Mechatronic Science, Electric Engineering and Computer (MEC). Jilin: IEEE, 2011: 743746.
[43] BENDER F A, KASZYNSKI M, SAWODNY O. Drive cycle prediction and energy management optimization for hybrid hydraulic vehicles [J]. IEEE Transactions on Vehicular Technology, 2013, 62(8): 35813592.
[44] LIU T, SUN H, HUI S, JIANG J. Investigation to simulation of control strategy of parallel hydraulic hybrid vehicles based on backward modeling [C] ∥ IEEE Transactions on Mechatronics and Automation. Beijing: IEEE, 2009: 551556.
[45] LEE H D, SUL S K. Fuzzy logic based torque control strategy for parallel type hybrid electric vehicle [J]. IEEE Transactions on Industrial Electronics, 1998, 45(4): 625632.
[46] DAI X, ZHANG C, LI S. Fuzzy PID control for boom energy recovery on hybrid hydraulic excavator [C] ∥ IEEE International Conference on Computer Science and Automation Engineering (CSAE). Beijing: IEEE, 2011: 154157.
[47] WANG D, LIN X, ZHANG Y. Fuzzy logic control for a parallel hybrid hydraulic excavator using genetic algorithm [J]. Automation in Construction, 2011, 20(5): 581587.
[48] LAI X L, GUAN C, LIN X. Fuzzy logical control algorithm based on engine on/off state switch for hybrid hydraulic excavator [J]. Advanced Materials Research, 2011, 228:447452.
[49] MATHESON P, STECKI J. Modeling and simulation of a fuzzy logic controller for a hydraulic hybrid powertrain for use in heavy commercial vehicles [R]. SAE Technical Paper (No. 2003 01 3275), 2003.
[50] WON J S, LANGARI R. Fuzzy torque distribution control for a parallel hybrid vehicle [J]. Expert Systems, 2002, 19(1): 410.
[51] PARK J, CHO D, KIM S, et al. Utilizing online learning based on echo state networks for the control of a hydraulic excavator [J]. Mechatronics, 2014, 24: 9861000.
[52] FENG D, HUANG D, LI D. Stochastic model predictive energy management for series hydraulic hybrid vehicle [J]. IEEE International Conference on Mechatronics and Automation, 2011(1): 19801986.
[53] WU B, LIN C C, FILIPI Z, et al. Optimal power management for a hydraulic hybrid delivery truck [J]. Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility, 2004, 42(1): 2340.
[54] MICHAEL S, MONIKA I. Investigation and energetic analysis of a novel hydraulic hybrid architecture for on road vehicles [C] ∥ The 13th Scandinavian International Conference on Fluid Power, SICFP2013. Linkping: SICPF,2013:8798.

[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[3] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[4] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[5] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[6] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[7] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[8] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[9] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[12] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[13] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[14] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[15] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.