Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1119-1129    DOI: 10.3785/j.issn.1008-973X.2019.06.011
机械与能源工程     
汽油发动机冷却系统建模与水温控制
吕良1(),陈虹1,宫洵1,赵海光2,胡云峰1,*()
1. 吉林大学 汽车仿真与控制国家重点实验室,通信工程学院,吉林 长春 130025
2. 中国环境科学研究院,北京 100012
Cooling system modeling and coolant temperature control for gasoline engine
Liang LV1(),Hong CHEN1,Xun GONG1,Hai-guang ZHAO2,Yun-feng HU1,*()
1. State Key Laboratory of Automotive Simulation and Control, College of Communication Engineering, Jilin University, Changchun 130025, China
2. Chinese Research Academy of Environmental Science, Beijing 100012, China
 全文: PDF(1653 KB)   HTML
摘要:

针对冷却系统组件为电子风扇和机械水泵的汽油发动机的水温控制要求,建立面向控制的冷却系统传热动力学模型,并提出水温的非线性控制方法. 根据传热学原理建立燃烧室对壁面的加热功率精确模型,据此获得较为精确的传热动力学模型;将动力学模型简化为对控制变量具有仿射形式的非线性模型,并设计扩张状态观测器补偿建模误差,进而获得相对简单且精度较高的面向控制器设计的模型;在Lyapunov稳定性框架下设计状态反馈控制器,引入非线性史密斯预估器补偿系统延迟,并在输入到状态稳定性框架下证明闭环误差系统的鲁棒性. 仿真结果表明:所提控制系统具有良好的水温跟踪效果,在瞬态工况下水温波动小于0.5 K,且在模型失配扰动下具有较好的鲁棒性.

关键词: 传热动力学模型非线性控制扩张状态观测器非线性史密斯预估器稳定性分析    
Abstract:

A control-oriented heat transfer dynamic model of engine cooling system was developed and a nonlinear control method was proposed, according to the requirement of coolant temperature control of gasoline engine equipped with an electric fan and a mechanical pump. Firstly, the heating power from combustion chamber to liner was precisely modeled based on the heat transfer theory, thereby ensuring a more accurate dynamic model. Secondly, the dynamic model was simplified as a nonlinear model with affine form for the control variable. An extended state observer was designed to compensate the modeling error. A controller-oriented design model was obtained, which was relatively simple and accurate. Then, a state feedback controller was designed based on the Lyapunov stability and a nonlinear Smith predictor was introduced to compensate the system delay. The robustness of the closed-loop error system was also proved under the input-state stability theory. The simulation results show that, the proposed control system has good temperature tracking performance and robustness under mismatch and disturbance, and the fluctuation is less than 0.5 K under transient conditions.

Key words: heat transfer dynamic model    nonlinear control    extended state observer    nonlinear Smith predictor    stability analysis
收稿日期: 2018-11-16 出版日期: 2019-05-22
CLC:  TK 411  
通讯作者: 胡云峰     E-mail: lvliangcn@163.com;huyf@jlu.edu.cn
作者简介: 吕良(1991—),男,博士生,从事发动机机理建模与先进控制算法研究. orcid.org/0000-0002-2726-4853. E-mail: lvliangcn@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吕良
陈虹
宫洵
赵海光
胡云峰

引用本文:

吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.

Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.011        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1119

图 1  汽油发动机冷却系统结构图
图 2  本研究提出的汽油发动机冷却系统控制框图
图 3  发动机与冷却液传热过程示意图
常量或变量 值或获取方式 单位 常量或变量 值或获取方式 单位
Clnr 8 098 J/K qm,a 进气量传感器 g/s
Cblk 54 313 J/K N 转速传感器 r/min
Cc 25 769 J/K qm,c 流量传感器 g/s
ρ 1 031 kg/m3 Tc 水温传感器 K
Vd 3.758 L Tenv VCU K
v VCU km/h
表 1  控制系统中各常量的值及变量的获取方式
图 4  燃烧气体、活塞环与壁面摩擦、燃烧室对壁面加热功率的变化
图 5  汽油发动机理想循环示意图
模型 RMSE/W NRMSE/%
Heywood(式(11)) 4 466 9.55
Bova(式(12)) 1 977 4.23
Zhou(式(13)) 3 857 8.25
本研究(式(21)) 861 1.84
表 2  燃烧室对壁面加热功率模型的精度对比
图 6  不同文献中燃烧室对壁面加热功率模型与GT-Power模型进行对比所使用的工况
图 7  不同文献中燃烧室对壁面加热功率模型与GT-Power模型的对比
图 8  本研究系统动力学模型与GT-Power模型的对比结果
图 9  控制系统有、无扰动观测器时的水温对比
图 10  控制系统有、无史密斯预估器时的水温对比
图 11  测试本研究控制器所使用的工况
图 12  本研究控制器在瞬态工况下的控制结果
图 13  本研究控制器与其他控制器在瞬态工况下的控制结果对比
1 BANJAC T, WURZENBERGER J C, KATRASNIK T Assessment of engine thermal management through advanced system engineering modeling[J]. Advances in Engineering Software, 2014, 71: 19- 33
doi: 10.1016/j.advengsoft.2014.01.016
2 JOHNSON T Vehicular emissions in review[J]. SAE International Journal of Engines, 2012, 7 (3): 1207- 1227
3 PAGE R W. Thermal management for the 21st century-improved thermal control & fuel economy in an army medium tactical vehicle [J]. SAE Technical Paper, 2005, 2005–01–2068.
4 郭新民, 高平, 孙世民, 等 自控电动冷却风扇在汽车发动机上的应用[J]. 内燃机工程, 1993, (1): 79- 82
GUO Xin-min, GAO Ping, SUN Shi-min, et al Application of an automatic control power-driven cooling fan in automobile engine[J]. Chinese Internal Combustion Engine Engineering, 1993, (1): 79- 82
5 FILHO I J D S, FRANCISCO A D O, PATERLINI B S, et al. Application study of electrical fans assemble applied in bus cooling system[J]. SAE Technical Paper, 2015, 2015–36–0402.
6 BRACE C J, BURNHAM-SLIPPER H, WIJETUNGE R S, et al. Integrated cooling systems for passenger vehicles[J]. SAE Technical Paper, 2001, 2001–01-1248.
7 MELZER F, HESSE U, ROCKLAGE G, et al. Thermo management [J]. SAE Technical Paper, 1999, 1999–01–0238.
8 ALLEN D J, LASECKI M P. Thermal management evolution and controlled coolant flow [J]. SAE Technical Paper, 2001, 2001–01–1732.
9 CHO H, JUNG D, FILIPI Z S, et al Application of controllable electric coolant pump for fuel economy and cooling performance improvement[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129 (1): 43- 50
10 BRUCKNER M, GRUENBACHER E, ALBERER D, et al. Predictive thermal management of combustion engines [C] // Proceedings of IEEE international Conference on Control Applications. Munich: IEEE, 2006: 2778–2783.
11 VERMILLION C, SUN J, BUTTS K Modeling, control design, and experimental validation of an overactuated thermal management system for engine dynamometer application[J]. IEEE Transactions on Control System Technology, 2009, 17 (3): 540- 551
doi: 10.1109/TCST.2008.2001267
12 ZHOU B, LAN X D, XU X H, et al Numerical model and control strategies for the advanced thermal management system of diesel engine[J]. Applied Thermal Engineering, 2015, 82: 368- 379
doi: 10.1016/j.applthermaleng.2015.03.005
13 PIZZONIA F, CASTIGLIONE T, BOVA S A robust model predictive control for efficient thermal management of internal combustion engines[J]. Applied Energy, 2016, 169: 555- 566
doi: 10.1016/j.apenergy.2016.02.063
14 CARESANA F, BILANCIA M, BARTOLINI C M Numerical method for assessing the potential of smart thermal management: application to a medium-upper segment passenger car[J]. Applied Thermal Engineering, 2011, 31: 3559- 3568
doi: 10.1016/j.applthermaleng.2011.07.017
15 SALAH M H, MITCHELL T H, WAGNER J R, et al A smart multiple-loop automotive cooling system-model, control, and experimental study[J]. IEEE-ASME Transactions on Mechatronics, 2009, 15 (1): 117- 124
16 SALAH M H, MITCHELL T H, WAGNER J R, et al Nonlinear-control strategy for advanced vehicle thermal-management system[J]. IEEE Transactions on Vehicular Technology, 2008, 57 (1): 127- 137
doi: 10.1109/TVT.2007.901892
17 陈家瑞. 汽车构造(上册)[M]. 北京: 机械工业出版社, 2009: 235–236.
18 PERSET D, JOUANNET B. Simulation of a cooling loop for a variable speed fan system [J]. SAE Technical Paper, 1999, 1999–01-0576.
19 郭新民, 魏新华, 傅旭光, 等 大型收获机电液混合驱动智能冷却系统[J]. 农业机械学报, 2006, 37 (4): 60- 63
GUO Xin-min, WEI Xin-hua, FU Xu-guang, et al Study on intelligent system of electric hydraulic admixture drive for big reaping machine[J]. Transactions of the Chinese Society of Agricultural Machinery, 2006, 37 (4): 60- 63
doi: 10.3969/j.issn.1000-1298.2006.04.016
20 CHOUKROUN A, CHANFREAU M. Automatic control of electronic actuators for an optimized engine cooling thermal management [J]. SAE Technical Paper, 2001, 2001–01-1758.
21 BADEKAR R, MAHAJAN J, KAKAYE S, et al. Development of control system for electrical radiator fan using dual sensor microprocessor based electronic unit [J]. SAE Technical Paper, 2006, 2006–01-1035.
22 陈贵堂, 王永珍. 工程热力学[M]. 北京: 北京理工出版社, 2008: 41–44.
23 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
24 乙二醇水溶液物性[DS/OL].(2016-01-04)[2019-01-02]. https://wenku.baidu.com/view/046d8b317c1cfad6185fa749.html.
25 KHODABAKHSHIAN M, FENG L, BORHESSON S, et al Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization[J]. Applied Energy, 2017, 188: 652- 671
doi: 10.1016/j.apenergy.2016.11.118
26 HEYWOOD J. Internal combustion engine fundamentals [M]. New York: McGraw Hill, 1988: 698–707.
27 BOVA S, CASTIGLIONE T, PIZZONIA F A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines[J]. Applied Energy, 2015, 163: 271- 282
28 CORTONA E, ONDER C H. Engine thermal management with electric cooling pump [J]. SAE Technical Paper, 2000, 2000–01-0965.
29 白敏丽, 丁铁新, 董卫军 活塞环-气缸套润滑摩擦研究[J]. 内燃机学报, 2005, 23 (1): 72- 76
BAI Min-li, DING Tie-xin, DONG Wei-jun A study on lubrication and friction on piston-ring pack in IC engine[J]. Transactions of CSICE, 2005, 23 (1): 72- 76
doi: 10.3321/j.issn:1000-0909.2005.01.012
30 SINGH A P, GADEKAR S, AGARWAL A K. In-cylinder air-flow characteristics using tomographic PIV at different engine speeds, intake air temperatures and intake valve deactivation in a single cylinder [J]. SAE Technical Paper, 2016, 2016–28-0001.
31 韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2013: 184–207.
32 宾洋. 车辆走停巡航系统的非线性控制研究 [D/OL]. 北京: 清华大学, 2006.
BIN Yang. Study on nonlinear control of vehicle stop and go cruise control system [D/OL]. Beijing: Tsinghua University, 2006.
33 陈虹, 胡云峰, 郭宏志, 等 基于backstepping方法的电子节气门控制[J]. 控制理论与应用, 2011, 28 (4): 491- 496
CHEN Hong, HU Yun-feng, GUO Hong-zhi, et al Control of electronic throttle based on backstepping approach[J]. Control Theory and Applications, 2011, 28 (4): 491- 496
[1] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[2] 檀盼龙, 孙青林, 陈增强. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报(工学版), 2017, 51(5): 992-999.
[3] 张明晖,杨家强,陈磊,楼佳羽. 基于扩张状态观测器的永磁电机电流预测控制[J]. 浙江大学学报(工学版), 2016, 50(7): 1387-1392.
[4] 王婷, 陈斌, 姚文熙, 吕征宇. 异步电机无速度传感器控制的Holtz型磁链观测器性能分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1690-1695.
[5] 杨波, 钟彦儒, 曾光. 阶梯波链式静止同步补偿器电容电压平衡控制[J]. J4, 2014, 48(4): 600-609.
[6] 赵权利, 孙红月, 尚岳全, 王智磊. 承压水孔压的时空变化对边坡稳定性影响[J]. J4, 2013, 47(8): 1366-1372.
[7] 刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 2009, 43(8): 1473-1479.
[8] 马皓 雷彪. 逆变器无连线并联系统的统一小信号模型及应用[J]. J4, 2007, 41(7): 1111-1115.
[9] 徐月同 傅建中 陈子辰. 磨床PMLSM进给单元鲁棒非线性控制器研究[J]. J4, 2005, 39(11): 1765-1768.
[10] 颜钢锋 张森林 刘妹琴. 标准神经网络模型及其应用[J]. J4, 2004, 38(3): 297-301.