Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2049-2057    DOI: 10.3785/j.issn.1008-973X.2019.11.001
机械工程     
不确定性扰动下双足机器人动态步行的自适应鲁棒控制
袁海辉(),葛一敏,甘春标*()
浙江大学 机械工程学院,浙江 杭州 310027
Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances
Hai-hui YUAN(),Yi-min GE,Chun-biao GAN*()
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(4626 KB)   HTML
摘要:

针对不确定性扰动下双足机器人动态步行的鲁棒控制问题,建立不确定性扰动下双足机器人的动力学模型. 将特定庞卡莱映射方法拓展到不确定性扰动下双足机器人的稳定性分析,将机器人随机系统的稳定性分析转化为确定性周期系统的稳定性分析. 基于滑模控制方法,提出自适应滑模控制器. 与以往滑模控制器相比,该控制器无需外部扰动的准确幅值信息. 考虑到双足机器人在实际应用中常会遭遇非平整路面,进一步将该自适应滑模控制器拓展到非平整路面的鲁棒控制:提出碰撞速度不变性条件,基于落地速度控制进行在线轨迹规划,基于自适应滑模控制器对机器人进行反馈控制. 基于三维(3-D)五杆双足机器人进行仿真实验,结果表明,所设计的控制器能有效实现机器人在不确定性扰动下的鲁棒控制.

关键词: 双足机器人动态步行不确定性扰动稳定性分析鲁棒控制    
Abstract:

A dynamic model for the bipedal robots under uncertain disturbances was established, aiming at the robust control problem of dynamic bipedal walking under uncertain disturbances. The specific Poincaré mapping method was extended to the stability analysis of bipedal robots under uncertain disturbances, by which the stability analysis of a robot random system was transformed into that of a deterministic and periodic system. An adaptive sliding-mode controller was proposed based on the sliding-mode control method. Compared with the traditional sliding-mode controllers, the proposed controller is applicable even when the magnitude information of the external disturbances is not accurately estimated. Considering that bipedal robots often encounter uneven terrains, the proposed sliding-mode controller was further extended to the robust control of dynamic walking on uneven terrains. For this goal, an invariance condition for impact velocity was presented and the trajectories were planned online based on landing-velocity control. Then, the presented controller was used to enforce feedback control on the robot. Numerical simulations were performed on a three-dimensional (3-D) five-link bipedal robot, and results show that the robust control of dynamic bipedal walking subject to uncertain disturbances can be realized by the proposed controller effectively.

Key words: bipedal robot    dynamic walking    uncertain disturbance    stability analysis    robust control
收稿日期: 2018-09-15 出版日期: 2019-11-21
CLC:  TU 111  
基金资助: 国家自然科学基金资助项目(91748126,11772292)
通讯作者: 甘春标     E-mail: hh_yuan@zju.edu.cn;cb_gan@zju.edu.cn
作者简介: 袁海辉(1990—),男,博士生,从事双足机器人研究. orcid.org/0000-0003-3404-4039. E-mail: hh_yuan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
袁海辉
葛一敏
甘春标

引用本文:

袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.

Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.001        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2049

图 1  3-D双足机器人数学模型
图 2  不确定性扰动作用示意图
图 3  基于自适应滑模控制器的机器人控制系统框图
图 4  摆动腿关节的运动学模型
图 5  随机样本随时间的变化
图 6  对外部扰动的幅值估计存在误差时机器人系统的状态轨迹相图与庞卡莱映射
图 7  不同控制器参数下机器人状态轨迹相图与特定庞卡莱映射图
图 8  不确定性扰动作用下机器人状态轨迹相图与特定庞卡莱映射
图 9  非平整路面上不确定性扰动作用下机器人状态轨迹相图与特定庞卡莱映射图
1 CHEN X, YU Z G, ZHANG W, et al Bio-inspired control of walking with toe-off, heel-strike and disturbance rejection for a biped robot[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 7962- 7971
doi: 10.1109/TIE.2017.2698361
2 KUINDERSMA S, DEITS R, FALLON M, et al Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[J]. Autonomous Robots, 2016, 40 (3): 429- 455
doi: 10.1007/s10514-015-9479-3
3 ZHAO Y, FERNANDEZ B R, SENTIS L Robust optimal planning and control of non-Periodic bipedal locomotion with a centroidal momentum model[J]. The International Journal of Robotics Research, 2017, 36 (11): 1211- 1242
doi: 10.1177/0278364917730602
4 DAI H, TEDRAKE R. L2-gain optimization for robust bipedal walking on unknown terrain [C]// 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 3116-3123.
5 YANCO H A, NORTON A, OBER W, et al Analysis of human?robot interaction at the DARPA robotics challenge trials[J]. Journal of Field Robotics, 2015, 32 (3): 420- 444
doi: 10.1002/rob.21568
6 KOBAYASHI T, AOYAMA T, HASEGAWA Y, et al Adaptive speed controller using swing leg motion for 3-D limit-cycle-based bipedal gait[J]. Nonlinear Dynamics, 2016, 84 (4): 1- 20
7 葛一敏, 袁海辉, 甘春标 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50 (4): 871- 879
GE Yi-min, YUAN Hai-hui, GAN Chun-biao Control method of an underactuated biped robot based on gait transition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (4): 871- 879
doi: 10.6052/0459-1879-18-049
8 RAHMANI M, GHANBARI A, ETTEFAGH M M A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm[J]. Journal of Vibration and Control, 2018, 24 (10): 2045- 2060
doi: 10.1177/1077546316676734
9 SANTOS C P, ALVES N, MORENO J C Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2016, 85: 1- 24
10 田彦涛, 孙中波, 李宏扬, 等 动态双足机器人的控制与优化研究进展[J]. 自动化学报, 2016, 42 (8): 1142- 1157
TIAN Yan-tao, SUN Zhong-bo, LI Hong-yang, et al A review of optimal and control strategies for dynamic walking bipedal robots[J]. Acta Automatica Sinica, 2016, 42 (8): 1142- 1157
11 VEER S, MOTAHAR M S, POULAKAKIS I. On the adaptation of dynamic walking to persistent external forcing using hybrid zero dynamics control [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 997-1003.
12 WANG L, GE Y, CHEN M, et al Dynamical balance optimization and control of biped robots in double-support phase under perturbing external forces[J]. Neural Computing and Applications, 2017, 28 (12): 4132- 4137
13 HAMED K A, BUSS B G, GRIZZLE J W Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations[J]. The International Journal of Robotics Research, 2016, 35 (8): 977- 999
doi: 10.1177/0278364915593400
14 SUN Z, ROOS N Dynamically stable walk control of biped humanoid on uneven and inclined terrain[J]. Neurocomputing, 2018, 280: 111- 122
doi: 10.1016/j.neucom.2017.08.077
15 MANCHESTER I R, METTIN U, IIDA F, et al Stable dynamic walking over uneven terrain[J]. The International Journal of Robotics Research, 2011, 30 (3): 265- 279
doi: 10.1177/0278364910395339
16 SABOURIN C, BRUNEAU O, BUCHE G Control strategy for the robust dynamic walk of a biped robot[J]. The International Journal of Robotics Research, 2006, 25 (9): 843- 60
doi: 10.1177/0278364906069151
17 HAMED K A, GRIZZLE J W Event-based stabilization of periodic orbits for underactuated 3-D bipedal robots with left-right symmetry[J]. IEEE Transactions on Robotics, 2014, 30 (2): 365- 381
doi: 10.1109/TRO.2013.2287831
18 MONTANO O, ORLOV Y, AOUSTIN Y, et al. Robust stabilization of a fully actuated 3D bipedal locomotion via nonlinear H∞-control under unilateral constraints [C]// 2016 IEEE-RAS, International Conference on Humanoid Robots. Cancun: IEEE, 2016: 538-543.
19 MAKAROV D, ULEYSKY M Specific Poincaré map for a randomly-perturbed nonlinear oscillator[J]. Journal of Physics: A General Physics, 2005, 39 (3): 489
20 SHINOZUKA M, JAN C M Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25 (1): 111- 28
doi: 10.1016/0022-460X(72)90600-1
21 GAN C B, YANG S X, LEI H A kind of noise-induced transition to noisy chaos in stochastically perturbed dynamical system[J]. Acta Mechanica Sinica, 2012, 28 (5): 1416- 23
doi: 10.1007/s10409-012-0084-9
22 SLOTINE J-J E, LI W. Applied nonlinear control [M]. Englewood Cliffs: Prentice hall, 1991.
[1] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[2] 陈迪剑, 徐一展, 王斌锐. 基于双生成函数的步行机器人最优步态生成[J]. 浙江大学学报(工学版), 2018, 52(7): 1253-1259.
[3] 魏建华, 孙春耕, 方锦辉, 王刚. 复合材料成形液压机自适应鲁棒运动控制[J]. 浙江大学学报(工学版), 2018, 52(5): 925-933.
[4] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[5] 陶国良, 周超超, 尚策. 气动位置伺服嵌入式控制器及控制策略[J]. 浙江大学学报(工学版), 2017, 51(4): 792-799.
[6] 熊义,魏建华,冯瑞琳,张强. 基于全局任务坐标系的二轴电液系统轮廓控制[J]. 浙江大学学报(工学版), 2015, 49(11): 2063-2072.
[7] 王婷, 陈斌, 姚文熙, 吕征宇. 异步电机无速度传感器控制的Holtz型磁链观测器性能分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1690-1695.
[8] 杨波, 钟彦儒, 曾光. 阶梯波链式静止同步补偿器电容电压平衡控制[J]. J4, 2014, 48(4): 600-609.
[9] 赵权利, 孙红月, 尚岳全, 王智磊. 承压水孔压的时空变化对边坡稳定性影响[J]. J4, 2013, 47(8): 1366-1372.
[10] 熊圆圆, 潘刚, 于玲. 一种欠驱动平面双足机器人变速控制策略[J]. J4, 2013, 47(6): 1006-1012.
[11] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[12] 阎博,江道灼,甘德强,藏玉清. 基于反馈线性化H∞方法的UPFC非线性鲁棒控制器[J]. J4, 2012, 46(11): 1975-1980.
[13] 王会方, 朱世强, 吴文祥. 谐波驱动伺服系统的改进自适应鲁棒控制[J]. J4, 2012, 46(10): 1757-1763.
[14] 刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 2009, 43(8): 1473-1479.
[15] 谢建蔚 陶国良 周洪. 气动人工肌肉关节的饱和自适应鲁棒控制[J]. J4, 2008, 42(6): 1031-1035.