Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 688-697    DOI: 10.3785/j.issn.1008-973X.2025.04.004
交通工程     
基于多结构数据驱动的车轮扁疤定量识别方法
钱新宇(),谢清林,陶功权*(),温泽峰
西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
Quantitative identification method of wheel flats based on multi-structured data-driven
Xinyu QIAN(),Qinglin XIE,Gongquan TAO*(),Zefeng WEN
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(13557 KB)   HTML
摘要:

为了快速、准确检测车轮扁疤,提出以不同结构数据为驱动载体的车轮扁疤定量识别方法. 将合成的扁疤车轮数据作为车轮不圆激励输入地铁车辆?轨道刚柔耦合动力学模型,获取不同工况下的轴箱振动响应. 对轴箱振动响应进行数据规整,制成不同结构形式的样本集,将它与速度信号融合输入多输入卷积神经网络(MCNN)模型进行训练,探究MCNN模型在不同数据结构输入下的性能差异. 结果表明:相较于设置的其他输入数据结构,输入数据结构为时域、频域和时频域组合的MCNN模型识别性能最佳,平均绝对百分比误差与拟合度(R2)分别为1.947%和0.9978,耗时相对较低,单个样本为0.157 9 ms. 经典模型对比实验、速度信息消融实验和实测数据迁移学习实验的结果表明,输入数据结构为时域、频域和时频域组合的MCNN模型具有工程应用价值.

关键词: 车轮扁疤定量识别多结构数据样本集多输入卷积神经网络轴箱振动加速度    
Abstract:

An exploration was conducted into the performance of wheel flat recognition driven by various structured data to achieve efficient and accurate detection of wheel flats, and a new quantitative identification method was proposed. Synthetic wheel flats data were input into the metro vehicle?rail rigid-flexible coupling dynamics model as wheel out-of-roundness excitation to obtain axle box vibration responses under different working conditions. The axle box vibration responses were regulated into sample sets of various structural forms. The sample sets were fused with speed signals and input into a multi-input convolutional neural network (MCNN) model for training, and the differences in performance of MCNN model under different data structure inputs were explored. Results show that compared with other input data structures in the setup, MCNN model recognition performance is best when the input data structure is a combination of time domain, frequency domain and time-frequency domain, with mean absolute percentage error and R-squared coefficient (R2) reaching 1.947% and 0.9978 respectively, and relatively low time-consumption, with 0.157 9 ms for a single sample. Results of the classical model comparison experiment, speed information ablation study, and real-data transfer learning experiment show that the MCNN model for engineering applications when the input data structure is a combination of time domain, frequency domain, and time-frequency domain.

Key words: wheel flats    quantitative identification    multi-structure data sample set    multi-input convolutional neural network    axlebox vibration acceleration
收稿日期: 2024-02-19 出版日期: 2025-04-25
CLC:  U 231  
基金资助: 国家自然科学基金资助项目(U21A20167,52475138,52002342);四川省自然科学基金青年科学基金资助项目(2022NSFSC1914).
通讯作者: 陶功权     E-mail: xyqian@my.swjtu.edu.cn;taogongquan@swjtu.edu.cn
作者简介: 钱新宇(1999—),男,硕士生,从事轮轨损伤检测研究. orcid.org/0009-0003-2242-949X. E-mail:xyqian@my.swjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
钱新宇
谢清林
陶功权
温泽峰

引用本文:

钱新宇,谢清林,陶功权,温泽峰. 基于多结构数据驱动的车轮扁疤定量识别方法[J]. 浙江大学学报(工学版), 2025, 59(4): 688-697.

Xinyu QIAN,Qinglin XIE,Gongquan TAO,Zefeng WEN. Quantitative identification method of wheel flats based on multi-structured data-driven. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 688-697.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.004        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/688

图 1  所提方法的车轮扁疤定量识别流程图
Lf/mmDf/mmLf/mmDf/mm
300.1700.1~0.7
400.1~0.2800.1~0.9
500.1~0.3900.1~1.0
600.1~0.51000.1~1.0
表 1  仿真车轮扁疤尺寸
图 2  扁疤车轮合成数据
参数数值参数数值
车体质量/ t36.565一系垂向悬挂刚度/(MN·m?1)0.326
构架质量/ t2.533二系垂向悬挂刚度/(MN·m?1)0.356
轮对质量/ t1.349扣件垂向刚度/(MN·m?1)55
轴箱质量/ t0.109扣件垂向阻尼/(kN·s·m?19.8
车体转动惯量I/(t?m2)1 589.63地基垂向刚度/(MN·m?1)170
构架转动惯量/(t?m2)0.583地基垂向阻尼/(kN·s·m?131
轮对转动惯量/(t?m2)0.116
表 2  仿真模型的主要结构参数
图 3  实测车轮不圆度
图 4  轴箱的垂向振动加速度
图 5  轴箱在2种工况下的振动加速度(时域样本)
图 6  轴箱在2种工况下的振动加速度(频域样本)
图 7  双通道频域样本集示例
图 8  轴箱在2种工况下的振动加速度(频域样本)
图 9  多输入卷积神经网络模型结构示意图
类型K1DK2DNNL1DL2DNK
卷积层18×1,8×82×1,2×24
池化层12×1,2×22×1,2×24
卷积层24×1,4×42×1,2×28
池化层22×1,2×22×1,2×28
卷积层32×1,2×22×1,2×216
池化层32×1,2×22×1,2×216
全连接层1161
全连接层281
输出层21
表 3  多输入卷积神经网络模型结构参数
组合形式MAPE/%R2ts/ms
17.1710.96340.0589
24.3400.98870.0552
36.3300.98570.0821
43.4870.99250.0765
53.2740.99470.1065
62.8510.99600.0915
71.9470.99780.1579
表 4  不同输入形式的识别性能对比
图 10  不同模型的识别性能对比
图 11  有无速度信息的模型识别性能对比
图 12  实测车轮局部缺陷
图 13  实测轴箱振动加速度信号
图 14  主要速度等级下的迁移学习结果
6 TANG Xueyang, CAI Xiaopei, WANG Weihua, et al Rail corrugation recognition based on particle probabilistic neural network algorithm[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (9): 1766- 1774
7 XIE Q, TAO G, LO S M, et al High-speed railway wheel polygon detection framework using improved frequency domain integration[J]. Vehicle System Dynamics, 2024, 62 (6): 1424- 1445
doi: 10.1080/00423114.2023.2235032
8 MOHAMMADI M, MOSLEH A, VALE C, et al An unsupervised learning approach for wayside train wheel flat detection[J]. Sensors, 2023, 23 (4): 1910
doi: 10.3390/s23041910
9 CHEN Y, ZHAO Z, KIM E, et al Wheel fault diagnosis model based on multichannel attention and supervised contrastive learning[J]. Advances in Mechanical Engineering, 2021, 13 (12): 1- 15
10 YE Y, SHI D, KRAUSE P, et al A data-driven method for estimating wheel flat length[J]. Vehicle System Dynamics, 2020, 58 (9): 1329- 1347
doi: 10.1080/00423114.2019.1620956
11 赵蓉, 史红梅 基于高阶谱特征提取的高速列车车轮擦伤识别算法研究[J]. 机械工程学报, 2017, 53 (6): 102- 109
ZHAO Rong, SHI Hongmei Research on wheel-flat recognition algorithm for high-speed train based on high-order spectrum feature extraction[J]. Journal of Mechanical Engineering, 2017, 53 (6): 102- 109
doi: 10.3901/JME.2017.06.102
12 ZHOU Q, LI Y, TIAN Y, et al A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery[J]. Measurement, 2020, 161: 107880
doi: 10.1016/j.measurement.2020.107880
13 XIE Q, TAO G, LO S M, et al A data-driven convolutional regression scheme for on-board and quantitative detection of rail corrugation roughness[J]. Wear, 2023, 524: 204770
14 杨光, 任尊松, 袁雨青 车轮扁疤伤损对高速列车轮对动力学性能影响[J]. 北京交通大学学报, 2018, 42 (3): 103- 111
YANG Guang, REN Zunsong, YUAN Yuqing Influence of wheel flat on dynamic performance of high-speed train wheelset[J]. Journal of Beijing Jiaotong University, 2018, 42 (3): 103- 111
doi: 10.11860/j.issn.1673-0291.2018.03.014
15 YANG J, ZHAO Y, WANG J, et al Investigation on impact response feature of railway vehicles with wheel flat fault under variable speed conditions[J]. Journal of Vibration and Acoustics, 2020, 142 (3): 031009
doi: 10.1115/1.4046126
16 LYON D. The calculation of track forces due to dipped rail joints, wheel flats and rail welds [EB/OL]. (2013–08–16)[2025–02–10]. https://www.rssb.co.uk/spark/sparkitem/pb010309.
1 刘国云, 曾京, 邬平波, 等 车轮扁疤所引起的车辆系统振动特性分析[J]. 机械工程学报, 2020, 56 (8): 182- 189
LIU Guoyun, ZENG Jing, WU Pingbo, et al Vibration characteristic analysis of vehicle systems due to wheel flat[J]. Journal of Mechanical Engineering, 2020, 56 (8): 182- 189
doi: 10.3901/JME.2020.08.182
17 李奕璠, 林建辉, 刘建新, 等 车轮踏面擦伤识别方法[J]. 振动与冲击, 2013, 32 (22): 21- 27
LI Yifan, LIN Jianhui, LIU Jianxin, et al Identification method of wheel tread flat[J]. Journal of Vibration and Shock, 2013, 32 (22): 21- 27
doi: 10.3969/j.issn.1000-3835.2013.22.004
18 陶功权. 和谐型电力机车车轮多边形磨耗形成机理研究[D]. 成都: 西南交通大学, 2018: 1–234.
TAO Gongquan. Investigation into the formation mechanism of the polygonal wear of HXD electric locomotive wheels [D]. Chengdu: Southwest Jiaotong University, 2018: 1–234.
19 MOSLEH A, MONTENEGRO P, ALVES COSTA P, et al An approach for wheel flat detection of railway train wheels using envelope spectrum analysis[J]. Structure and Infrastructure Engineering, 2021, 17 (12): 1710- 1729
doi: 10.1080/15732479.2020.1832536
20 刘孟奇, 陶功权, 肖国放, 等 中高频激励下轮轨不同建模方法对轮轨动态相互作用的影响[J]. 振动与冲击, 2021, 40 (10): 150- 158
LIU Mengqi, TAO Gongquan, XIAO Guofang, et al Influence of wheelset and track modelling approaches on wheel-rail dynamic interaction under the excitation of medium-high frequency[J]. Journal of Vibration and Shock, 2021, 40 (10): 150- 158
21 MOMHUR A, ZHAO Y X, LI W Q, et al Flexible-rigid wheelset introduced dynamic effects due to wheel tread flat[J]. Shock and Vibration, 2021, 2021 (1): 5537286
doi: 10.1155/2021/5537286
22 郭欣茹, 杨云帆, 凌亮, 等 防滑控制策略对机车车轮的损伤影响研究[J]. 机械工程学报, 2023, 59 (22): 369- 379
GUO Xinru, YANG Yunfan, LING Liang, et al Effect of anti-slip control strategy on locomotive wheel tread damage[J]. Journal of Mechanical Engineering, 2023, 59 (22): 369- 379
doi: 10.3901/JME.2023.22.369
23 YE Y, HUANG C, ZENG J, et al Shock detection of rotating machinery based on activated time-domain images and deep learning: an application to railway wheel flat detection[J]. Mechanical Systems and Signal Processing, 2023, 186: 109856
doi: 10.1016/j.ymssp.2022.109856
24 XIE Q, TAO G, HE B, et al Rail corrugation detection using one-dimensional convolution neural network and data-driven method[J]. Measurement, 2022, 200: 111624
doi: 10.1016/j.measurement.2022.111624
25 曹现刚, 叶煜, 赵友军, 等 基于KPCA-LSTM的旋转机械剩余使用寿命预测[J]. 振动与冲击, 2023, 42 (24): 81- 91
CAO Xiangang, YE Yu, ZHAO Youjun, et al Remaining useful life prediction of rotating machinery based on KPCA-LSTM[J]. Journal of Vibration and Shock, 2023, 42 (24): 81- 91
26 鄢仁武, 林穿, 高硕勋, 等 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击, 2020, 39 (10): 198- 205
YAN Renwu, LIN Chuan, GAO Shuoxun, et al Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39 (10): 198- 205
27 BAI Y, YANG J, WANG J, et al Intelligent diagnosis for railway wheel flat using frequency-domain Gramian angular field and transfer learning network[J]. IEEE Access, 2020, 8: 105118- 105126
doi: 10.1109/ACCESS.2020.3000068
2 YE Y, SHI D, KRAUSE P, et al Wheel flat can cause or exacerbate wheel polygonization[J]. Vehicle System Dynamics, 2020, 58 (10): 1575- 1604
doi: 10.1080/00423114.2019.1636098
3 LUO R, VINCENT D Reinvestigation into railway wheel-track interaction and suspension damage[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235 (4): 425- 439
doi: 10.1177/0954409720932022
4 JING L, WANG K, ZHAI W Impact vibration behavior of railway vehicles: a state-of-the-art overview[J]. Acta Mechanica Sinica, 2021, 37 (8): 1193- 1221
doi: 10.1007/s10409-021-01140-9
5 曾京, 彭莘宇, 汪群生, 等 铁道车辆车轮扁疤故障检测技术综述[J]. 交通运输工程学报, 2022, 22 (2): 1- 18
ZENG Jing, PENG Xinyu, WANG Qunsheng, et al Review on detection technologies of railway vehicle wheel flat fault[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (2): 1- 18
[1] 胡鸿昊,李秀娟,于俊锋,张清周,柳景青. 基于耦合模拟的污水管网入流入渗定量识别[J]. 浙江大学学报(工学版), 2022, 56(11): 2313-2320.