交通工程 |
|
|
|
|
基于多结构数据驱动的车轮扁疤定量识别方法 |
钱新宇( ),谢清林,陶功权*( ),温泽峰 |
西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031 |
|
Quantitative identification method of wheel flats based on multi-structured data-driven |
Xinyu QIAN( ),Qinglin XIE,Gongquan TAO*( ),Zefeng WEN |
State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China |
引用本文:
钱新宇,谢清林,陶功权,温泽峰. 基于多结构数据驱动的车轮扁疤定量识别方法[J]. 浙江大学学报(工学版), 2025, 59(4): 688-697.
Xinyu QIAN,Qinglin XIE,Gongquan TAO,Zefeng WEN. Quantitative identification method of wheel flats based on multi-structured data-driven. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 688-697.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.004
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I4/688
|
6 |
TANG Xueyang, CAI Xiaopei, WANG Weihua, et al Rail corrugation recognition based on particle probabilistic neural network algorithm[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (9): 1766- 1774
|
7 |
XIE Q, TAO G, LO S M, et al High-speed railway wheel polygon detection framework using improved frequency domain integration[J]. Vehicle System Dynamics, 2024, 62 (6): 1424- 1445
doi: 10.1080/00423114.2023.2235032
|
8 |
MOHAMMADI M, MOSLEH A, VALE C, et al An unsupervised learning approach for wayside train wheel flat detection[J]. Sensors, 2023, 23 (4): 1910
doi: 10.3390/s23041910
|
9 |
CHEN Y, ZHAO Z, KIM E, et al Wheel fault diagnosis model based on multichannel attention and supervised contrastive learning[J]. Advances in Mechanical Engineering, 2021, 13 (12): 1- 15
|
10 |
YE Y, SHI D, KRAUSE P, et al A data-driven method for estimating wheel flat length[J]. Vehicle System Dynamics, 2020, 58 (9): 1329- 1347
doi: 10.1080/00423114.2019.1620956
|
11 |
赵蓉, 史红梅 基于高阶谱特征提取的高速列车车轮擦伤识别算法研究[J]. 机械工程学报, 2017, 53 (6): 102- 109 ZHAO Rong, SHI Hongmei Research on wheel-flat recognition algorithm for high-speed train based on high-order spectrum feature extraction[J]. Journal of Mechanical Engineering, 2017, 53 (6): 102- 109
doi: 10.3901/JME.2017.06.102
|
12 |
ZHOU Q, LI Y, TIAN Y, et al A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery[J]. Measurement, 2020, 161: 107880
doi: 10.1016/j.measurement.2020.107880
|
13 |
XIE Q, TAO G, LO S M, et al A data-driven convolutional regression scheme for on-board and quantitative detection of rail corrugation roughness[J]. Wear, 2023, 524: 204770
|
14 |
杨光, 任尊松, 袁雨青 车轮扁疤伤损对高速列车轮对动力学性能影响[J]. 北京交通大学学报, 2018, 42 (3): 103- 111 YANG Guang, REN Zunsong, YUAN Yuqing Influence of wheel flat on dynamic performance of high-speed train wheelset[J]. Journal of Beijing Jiaotong University, 2018, 42 (3): 103- 111
doi: 10.11860/j.issn.1673-0291.2018.03.014
|
15 |
YANG J, ZHAO Y, WANG J, et al Investigation on impact response feature of railway vehicles with wheel flat fault under variable speed conditions[J]. Journal of Vibration and Acoustics, 2020, 142 (3): 031009
doi: 10.1115/1.4046126
|
16 |
LYON D. The calculation of track forces due to dipped rail joints, wheel flats and rail welds [EB/OL]. (2013–08–16)[2025–02–10]. https://www.rssb.co.uk/spark/sparkitem/pb010309.
|
1 |
刘国云, 曾京, 邬平波, 等 车轮扁疤所引起的车辆系统振动特性分析[J]. 机械工程学报, 2020, 56 (8): 182- 189 LIU Guoyun, ZENG Jing, WU Pingbo, et al Vibration characteristic analysis of vehicle systems due to wheel flat[J]. Journal of Mechanical Engineering, 2020, 56 (8): 182- 189
doi: 10.3901/JME.2020.08.182
|
17 |
李奕璠, 林建辉, 刘建新, 等 车轮踏面擦伤识别方法[J]. 振动与冲击, 2013, 32 (22): 21- 27 LI Yifan, LIN Jianhui, LIU Jianxin, et al Identification method of wheel tread flat[J]. Journal of Vibration and Shock, 2013, 32 (22): 21- 27
doi: 10.3969/j.issn.1000-3835.2013.22.004
|
18 |
陶功权. 和谐型电力机车车轮多边形磨耗形成机理研究[D]. 成都: 西南交通大学, 2018: 1–234. TAO Gongquan. Investigation into the formation mechanism of the polygonal wear of HXD electric locomotive wheels [D]. Chengdu: Southwest Jiaotong University, 2018: 1–234.
|
19 |
MOSLEH A, MONTENEGRO P, ALVES COSTA P, et al An approach for wheel flat detection of railway train wheels using envelope spectrum analysis[J]. Structure and Infrastructure Engineering, 2021, 17 (12): 1710- 1729
doi: 10.1080/15732479.2020.1832536
|
20 |
刘孟奇, 陶功权, 肖国放, 等 中高频激励下轮轨不同建模方法对轮轨动态相互作用的影响[J]. 振动与冲击, 2021, 40 (10): 150- 158 LIU Mengqi, TAO Gongquan, XIAO Guofang, et al Influence of wheelset and track modelling approaches on wheel-rail dynamic interaction under the excitation of medium-high frequency[J]. Journal of Vibration and Shock, 2021, 40 (10): 150- 158
|
21 |
MOMHUR A, ZHAO Y X, LI W Q, et al Flexible-rigid wheelset introduced dynamic effects due to wheel tread flat[J]. Shock and Vibration, 2021, 2021 (1): 5537286
doi: 10.1155/2021/5537286
|
22 |
郭欣茹, 杨云帆, 凌亮, 等 防滑控制策略对机车车轮的损伤影响研究[J]. 机械工程学报, 2023, 59 (22): 369- 379 GUO Xinru, YANG Yunfan, LING Liang, et al Effect of anti-slip control strategy on locomotive wheel tread damage[J]. Journal of Mechanical Engineering, 2023, 59 (22): 369- 379
doi: 10.3901/JME.2023.22.369
|
23 |
YE Y, HUANG C, ZENG J, et al Shock detection of rotating machinery based on activated time-domain images and deep learning: an application to railway wheel flat detection[J]. Mechanical Systems and Signal Processing, 2023, 186: 109856
doi: 10.1016/j.ymssp.2022.109856
|
24 |
XIE Q, TAO G, HE B, et al Rail corrugation detection using one-dimensional convolution neural network and data-driven method[J]. Measurement, 2022, 200: 111624
doi: 10.1016/j.measurement.2022.111624
|
25 |
曹现刚, 叶煜, 赵友军, 等 基于KPCA-LSTM的旋转机械剩余使用寿命预测[J]. 振动与冲击, 2023, 42 (24): 81- 91 CAO Xiangang, YE Yu, ZHAO Youjun, et al Remaining useful life prediction of rotating machinery based on KPCA-LSTM[J]. Journal of Vibration and Shock, 2023, 42 (24): 81- 91
|
26 |
鄢仁武, 林穿, 高硕勋, 等 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击, 2020, 39 (10): 198- 205 YAN Renwu, LIN Chuan, GAO Shuoxun, et al Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39 (10): 198- 205
|
27 |
BAI Y, YANG J, WANG J, et al Intelligent diagnosis for railway wheel flat using frequency-domain Gramian angular field and transfer learning network[J]. IEEE Access, 2020, 8: 105118- 105126
doi: 10.1109/ACCESS.2020.3000068
|
2 |
YE Y, SHI D, KRAUSE P, et al Wheel flat can cause or exacerbate wheel polygonization[J]. Vehicle System Dynamics, 2020, 58 (10): 1575- 1604
doi: 10.1080/00423114.2019.1636098
|
3 |
LUO R, VINCENT D Reinvestigation into railway wheel-track interaction and suspension damage[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235 (4): 425- 439
doi: 10.1177/0954409720932022
|
4 |
JING L, WANG K, ZHAI W Impact vibration behavior of railway vehicles: a state-of-the-art overview[J]. Acta Mechanica Sinica, 2021, 37 (8): 1193- 1221
doi: 10.1007/s10409-021-01140-9
|
5 |
曾京, 彭莘宇, 汪群生, 等 铁道车辆车轮扁疤故障检测技术综述[J]. 交通运输工程学报, 2022, 22 (2): 1- 18 ZENG Jing, PENG Xinyu, WANG Qunsheng, et al Review on detection technologies of railway vehicle wheel flat fault[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (2): 1- 18
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|