土木工程、交通工程 |
|
|
|
|
基于时频卷积神经网络的供水管道漏损识别 |
赖凌轩( ),柳景青*( ),周一粟,李秀娟 |
浙江大学 建筑工程学院,浙江 杭州 310058 |
|
Identification of leakage in water supply pipelines based on time-frequency convolutional neural network |
Lingxuan LAI( ),Jingqing LIU*( ),Yisu ZHOU,Xiujuan LI |
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
赖凌轩,柳景青,周一粟,李秀娟. 基于时频卷积神经网络的供水管道漏损识别[J]. 浙江大学学报(工学版), 2025, 59(1): 196-204.
Lingxuan LAI,Jingqing LIU,Yisu ZHOU,Xiujuan LI. Identification of leakage in water supply pipelines based on time-frequency convolutional neural network. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 196-204.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.019
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I1/196
|
1 |
AHOPELTO S, VAHALA R Cost-benefit analysis of leakage reduction methods in water supply networks[J]. Water, 2020, 12 (1): 195
doi: 10.3390/w12010195
|
2 |
SARKAMARYAN S, HAGHIGHI A, ADIB A Leakage detection and calibration of pipe networks by the inverse transient analysis modified by Gaussian functions for leakage simulation[J]. Journal of Water Supply: Research and Technology-Aqua, 2018, 67 (4): 404- 413
doi: 10.2166/aqua.2018.176
|
3 |
COLOMBO A F, KARNEY B W Energy and costs of leaky pipes: towards comprehensive picture[J]. Journal of Water Resources Planning and Management, 2002, 128 (6): 441- 450
doi: 10.1061/(ASCE)0733-9496(2002)128:6(441)
|
4 |
ZHU L J, WANG D M, YUE J K, et al Leakage detection method of natural gas pipeline combining improved variational mode decomposition and Lempel-Ziv complexity analysis[J]. Transactions of the Institute of Measurement and Control, 2022, 44 (15): 2865- 2876
doi: 10.1177/01423312221088080
|
5 |
XIE J, ZHANG Y B, HE Z Y, et al Automated leakage detection method of pipeline networks under complicated backgrounds by combining infrared thermography and Faster R-CNN technique[J]. Process Safety and Environmental Protection, 2023, 174: 39- 52
doi: 10.1016/j.psep.2023.04.006
|
6 |
AMRAN T S T, ISMAIL M P, AHMAD M R, et al. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR) [C]// Advancing Nuclear Science and Engineering for Sustainable Nuclear Energy Knowledge . [S. l.]: AIP Publishing, 2017, 1799: 030004.
|
7 |
GONG W J, SURESH M A, SMITH L, et al Mobile sensor networks for optimal leak and back flow detection and localization in municipal water networks[J]. Environmental Modelling and Software, 2016, 80: 306- 321
doi: 10.1016/j.envsoft.2016.02.001
|
8 |
QI Z X, ZHENG F F, GUO D L, et al Better understanding of the capacity of pressure sensor systems to detect pipe burst within water distribution networks[J]. Journal of Water Resources Planning and Management, 2018, 144 (7): 04018035
doi: 10.1061/(ASCE)WR.1943-5452.0000957
|
9 |
GAO Y, LIU Y Y Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes[J]. Mechanical Systems and Signal Processing, 2017, 90: 126- 140
doi: 10.1016/j.ymssp.2016.12.018
|
10 |
ADEDEJI K B, HAMAM Y, ABE B T, et al Towards achieving a reliable leakage detection and localization algorithm for application in water piping networks: an overview[J]. IEEE Access, 2017, 5 (10): 20272- 20285
|
11 |
LU H F, LSELEY T, BEHBAHANI S, et al Leakage detection techniques for oil and gas pipelines: state-of-the-art[J]. Tunnelling and Underground Space Technology, 2020, 98: 103249
doi: 10.1016/j.tust.2019.103249
|
12 |
ZHOU M F, XU Y Z, CUI B H, et al Pipeline leakage detection and localization using a reliable pipeline-mechanism model incorporating a Bayesian model updating approach[J]. Water, 2022, 14 (8): 1255
doi: 10.3390/w14081255
|
13 |
EI-ZAHAB S, ASAAD A, ABDELKADER E M, et al Collective thinking approach improving leak detection systems[J]. Smart Water, 2016, 2: 3
doi: 10.1186/s40713-017-0007-9
|
14 |
KANG J, PARK Y J, LEE J, et al Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (5): 4279- 4289
doi: 10.1109/TIE.2017.2764861
|
15 |
XU Z H, MA W, LIN P, et al Deep learning of rock images for intelligent lithology identification[J]. Computers and Geosciences, 2021, 154: 104799
doi: 10.1016/j.cageo.2021.104799
|
16 |
朱丹宸, 张永祥, 潘洋洋, 等 基于多传感器信号和卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39 (4): 172- 178 ZHU Danchen, ZHANG Yongxiang, PAN Yangang, et al Fault diagnosis for rolling element bearings based on multi-sensor signals and CNN[J]. Journal of Vibration and Shock, 2020, 39 (4): 172- 178
|
17 |
GUO G C, YU X P, LIU S M, et al Leakage detection in water distribution systems based on time-frequency convolutional neural network[J]. Journal of Water Resources Planning and Management, 2021, 147 (2): 04020101
doi: 10.1061/(ASCE)WR.1943-5452.0001317
|
18 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// International Conference on Machine Learning . San Diego: MIT Press, 2015, 37: 448–456.
|
19 |
KAMALAKKANNAN R, ROOPKUMAR R, ZAYED A Short time coupled fractional fourier transform and the uncertainty principle[J]. Fractional Calculus and Applied Analysis, 2021, 24: 667- 688
doi: 10.1515/fca-2021-0029
|
20 |
ZHOU X, TANG Z H, XU W R, et al. Deep learning identifies accurate burst locations in water distribution networks [J]. Water Research , 2019, 166: 115058.
|
21 |
赵林硕, 叶郭煊, 申永刚, 等 基于时频卷积神经网络的供水管道漏损检测[J]. 中国给水排水, 2023, 39 (17): 53- 58 ZHAO Linshuo, YE Guoxuan, SHEN Yonggang, et al Leakage detection of water supply pipeline based on time-frequency convolutional neural network[J]. China Water and Wastewater, 2023, 39 (17): 53- 58
|
22 |
BUTTERFIELD J D, KRYNKIN A, COLLINS R P, et al Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes[J]. Applied Acoustics, 2017, 199: 146- 155
|
23 |
JALIL M, BUTT F A, MALIK A. Short-time energy, magnitude, zero crossing rate and autocorrelation measurement for discriminating voiced and unvoiced segments of speech signals [C]// 2013 IEEE International Conference on Technological Advances in Electrical, Electronics and Computer Engineering . Konya: IEEE, 2013: 208–212.
|
24 |
CHUANG W Y, TSAI Y L, WANG L H. Leak detection in water distribution pipes based on CNN with Mel-frequency cepstral coefficients [C]// The 3rd International Conference on Innovation in Artificial Intelligence . Suzhou: [s.n.], 2019: 83–86.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|