Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 196-204    DOI: 10.3785/j.issn.1008-973X.2025.01.019
土木工程、交通工程     
基于时频卷积神经网络的供水管道漏损识别
赖凌轩(),柳景青*(),周一粟,李秀娟
浙江大学 建筑工程学院,浙江 杭州 310058
Identification of leakage in water supply pipelines based on time-frequency convolutional neural network
Lingxuan LAI(),Jingqing LIU*(),Yisu ZHOU,Xiujuan LI
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2092 KB)   HTML
摘要:

现有供水管道漏损检测研究不能判断漏损压力,为此依托全尺寸管网漏损中试实验平台采集管道声信号,提出基于窗参数优化的短时傅里叶变换和卷积神经网络的供水管道漏损压力识别模型. 对于相同面积、不同形状的漏口,采用短时傅里叶变换处理声信号,得到包含三压力水平下漏损特征的二维时频谱图,作为卷积神经网络的输入. 在窗参数和网络超参数优化的基础上,构建漏损压力识别模型. 实验结果表明:所提模型总体识别准确率为95.2%,高、中、低压漏损工况识别准确率为93.5%、92.9%、92.4%;相比传统机器学习模型,所提模型识别漏损和压力准确率更高,可用于实际供水管网的漏损压力识别.

关键词: 供水管道漏损压力识别声信号监测短时傅里叶变换卷积神经网络窗参数优化    
Abstract:

A leakage pressure identification model in the water supply pipeline was proposed to resolve problems that the existing studies of leakage detection failed to determine the pressure of leakage. The proposed model was based on the short-time Fourier transform with window parameter optimization and convolutional neural network. Pipeline sound signals were collected from a full-scale pipeline leakage pilot experimental platform. Leakage conditions of the same leak area but different shapes were subjected to short-time Fourier transform processing to obtain two-dimensional time-frequency spectra. The spectra contained characteristics related to leakage at three different pressure levels and were used as input for the convolutional neural network. The leakage pressure identification model was constructed based on the optimization of window parameters and network hyperparameters. Experimental results showed that the proposed model achieved an overall accuracy of 95.2%, and the recognition of high-pressure, middle-pressure and low-pressure conditions were 93.5%, 92.9% and 92.4% respectively. The proposed model has a higher accuracy in identifying leakage and pressure of leakage than traditional machine learning models, and the model can be used for identifying leakage pressure levels in real water supply networks.

Key words: water supply pipeline    leakage pressure identification    sound signal monitoring    short-time Fourier transform    convolutional neural network    window parameters optimization
收稿日期: 2024-01-16 出版日期: 2025-01-18
CLC:  TU 991  
通讯作者: 柳景青     E-mail: 22112072@zju.edu.cn;liujingqing@zju.edu.cn
作者简介: 赖凌轩(1999—),男,硕士生,从事供水管道漏损识别研究. orcid.org/0009-0002-8858-0961. E-mail:22112072@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赖凌轩
柳景青
周一粟
李秀娟

引用本文:

赖凌轩,柳景青,周一粟,李秀娟. 基于时频卷积神经网络的供水管道漏损识别[J]. 浙江大学学报(工学版), 2025, 59(1): 196-204.

Lingxuan LAI,Jingqing LIU,Yisu ZHOU,Xiujuan LI. Identification of leakage in water supply pipelines based on time-frequency convolutional neural network. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 196-204.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.019        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/196

图 1  供水管道漏损实验平台示意图
图 2  无漏损工况信号波形图
标签分类定义样本数
无漏损未发生漏损1 908
低压漏损漏损且水头为10、15 m1 728
中压漏损漏损且水头为20 m1 728
高压漏损漏损且水头为25、30 m1 728
噪声环境噪声1 800
表 1  漏损工况识别数据集划分
图 3  供水管道不同工况的声信号时频特征
图 4  供水管道不同漏损工况的时频谱图
组序$ L $$ N $$ {\mathrm{Ip}} $Acc
125664129×650.908
2256128129×330.897
3256192129×220.884
4512128257×330.924
5512256257×170.919
6512384257×110.899
71 024256513×170.952
81 024512513×90.936
91 024768513×60.927
表 2  时频谱图参数设计及模型准确率
图 5  不同窗参数的时频谱图
图 6  基于短时傅里叶变换和卷积神经网络的供水管道漏损识别模型
层名层参数输出
Conv1Kernel size=(3, 3), stride=(1, 1), padding=(1, 1)[32, 513, 17]
Pool1Kernel size=(2, 2), stride=(1, 1)[32, 256, 8]
Conv2Kernel size=(3, 3), stride=(1, 1), padding=(1, 1)[64, 256, 8]
Pool2Kernel size=(2, 2), stride=(1, 1)[64, 128, 4]
FC1[128]
DropoutDropout=0.3[128]
FC2[5]
表 3  基于短时傅里叶变换和卷积神经网络的供水管道漏损识别模型参数
组别LRMB组别LRMB
10.010 016100.001 064
20.010 032110.001 080
30.010 048120.001 096
40.010 064130.000 116
50.010 080140.000 132
60.010 096150.000 148
70.001 016160.000 164
80.001 032170.000 180
90.001 048180.000 196
表 4  超参数组合优化设计
图 7  不同超参数组合的数据集准确率
图 8  基于短时傅里叶变换和卷积神经网络的供水管道漏损识别模型性能
模块
Acc/%F1
STFT-CNN95.20.949
删除STFT-CNN的预处理91.90.920
删除STFT-CNN的BN92.50.923
删除STFT-CNN的丢弃层92.80.926
采用非最佳超参数的模型:LR=0.0001, MB=9687.80.875
采用非最佳窗参数的模型:窗长256,帧移19288.40.883
表 5  模块消融实验结果
分类模型输入特征AccF1
无漏损漏损噪声低压中压高压
STFT-CNN时频谱图0.9520.9720.9880.9870.9240.9290.935
MFCC-CNNMFCC0.8590.9600.9750.9570.7590.7910.785
DTSTD、RMS、ZCR、PSD0.6840.8680.9200.8410.4580.5710.594
SVMApEn, MFCC, IMF0.8440.9440.9680.9670.7200.7640.775
KNN一维时序信号0.8310.7320.8840.8540.8730.8750.901
XGBoost一维时序信号0.7630.9000.9480.9180.5770.6610.680
表 6  不同分类模型的性能比较
图 9  分类模型的召回率和精确率
1 AHOPELTO S, VAHALA R Cost-benefit analysis of leakage reduction methods in water supply networks[J]. Water, 2020, 12 (1): 195
doi: 10.3390/w12010195
2 SARKAMARYAN S, HAGHIGHI A, ADIB A Leakage detection and calibration of pipe networks by the inverse transient analysis modified by Gaussian functions for leakage simulation[J]. Journal of Water Supply: Research and Technology-Aqua, 2018, 67 (4): 404- 413
doi: 10.2166/aqua.2018.176
3 COLOMBO A F, KARNEY B W Energy and costs of leaky pipes: towards comprehensive picture[J]. Journal of Water Resources Planning and Management, 2002, 128 (6): 441- 450
doi: 10.1061/(ASCE)0733-9496(2002)128:6(441)
4 ZHU L J, WANG D M, YUE J K, et al Leakage detection method of natural gas pipeline combining improved variational mode decomposition and Lempel-Ziv complexity analysis[J]. Transactions of the Institute of Measurement and Control, 2022, 44 (15): 2865- 2876
doi: 10.1177/01423312221088080
5 XIE J, ZHANG Y B, HE Z Y, et al Automated leakage detection method of pipeline networks under complicated backgrounds by combining infrared thermography and Faster R-CNN technique[J]. Process Safety and Environmental Protection, 2023, 174: 39- 52
doi: 10.1016/j.psep.2023.04.006
6 AMRAN T S T, ISMAIL M P, AHMAD M R, et al. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR) [C]// Advancing Nuclear Science and Engineering for Sustainable Nuclear Energy Knowledge . [S. l.]: AIP Publishing, 2017, 1799: 030004.
7 GONG W J, SURESH M A, SMITH L, et al Mobile sensor networks for optimal leak and back flow detection and localization in municipal water networks[J]. Environmental Modelling and Software, 2016, 80: 306- 321
doi: 10.1016/j.envsoft.2016.02.001
8 QI Z X, ZHENG F F, GUO D L, et al Better understanding of the capacity of pressure sensor systems to detect pipe burst within water distribution networks[J]. Journal of Water Resources Planning and Management, 2018, 144 (7): 04018035
doi: 10.1061/(ASCE)WR.1943-5452.0000957
9 GAO Y, LIU Y Y Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes[J]. Mechanical Systems and Signal Processing, 2017, 90: 126- 140
doi: 10.1016/j.ymssp.2016.12.018
10 ADEDEJI K B, HAMAM Y, ABE B T, et al Towards achieving a reliable leakage detection and localization algorithm for application in water piping networks: an overview[J]. IEEE Access, 2017, 5 (10): 20272- 20285
11 LU H F, LSELEY T, BEHBAHANI S, et al Leakage detection techniques for oil and gas pipelines: state-of-the-art[J]. Tunnelling and Underground Space Technology, 2020, 98: 103249
doi: 10.1016/j.tust.2019.103249
12 ZHOU M F, XU Y Z, CUI B H, et al Pipeline leakage detection and localization using a reliable pipeline-mechanism model incorporating a Bayesian model updating approach[J]. Water, 2022, 14 (8): 1255
doi: 10.3390/w14081255
13 EI-ZAHAB S, ASAAD A, ABDELKADER E M, et al Collective thinking approach improving leak detection systems[J]. Smart Water, 2016, 2: 3
doi: 10.1186/s40713-017-0007-9
14 KANG J, PARK Y J, LEE J, et al Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (5): 4279- 4289
doi: 10.1109/TIE.2017.2764861
15 XU Z H, MA W, LIN P, et al Deep learning of rock images for intelligent lithology identification[J]. Computers and Geosciences, 2021, 154: 104799
doi: 10.1016/j.cageo.2021.104799
16 朱丹宸, 张永祥, 潘洋洋, 等 基于多传感器信号和卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39 (4): 172- 178
ZHU Danchen, ZHANG Yongxiang, PAN Yangang, et al Fault diagnosis for rolling element bearings based on multi-sensor signals and CNN[J]. Journal of Vibration and Shock, 2020, 39 (4): 172- 178
17 GUO G C, YU X P, LIU S M, et al Leakage detection in water distribution systems based on time-frequency convolutional neural network[J]. Journal of Water Resources Planning and Management, 2021, 147 (2): 04020101
doi: 10.1061/(ASCE)WR.1943-5452.0001317
18 IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// International Conference on Machine Learning . San Diego: MIT Press, 2015, 37: 448–456.
19 KAMALAKKANNAN R, ROOPKUMAR R, ZAYED A Short time coupled fractional fourier transform and the uncertainty principle[J]. Fractional Calculus and Applied Analysis, 2021, 24: 667- 688
doi: 10.1515/fca-2021-0029
20 ZHOU X, TANG Z H, XU W R, et al. Deep learning identifies accurate burst locations in water distribution networks [J]. Water Research , 2019, 166: 115058.
21 赵林硕, 叶郭煊, 申永刚, 等 基于时频卷积神经网络的供水管道漏损检测[J]. 中国给水排水, 2023, 39 (17): 53- 58
ZHAO Linshuo, YE Guoxuan, SHEN Yonggang, et al Leakage detection of water supply pipeline based on time-frequency convolutional neural network[J]. China Water and Wastewater, 2023, 39 (17): 53- 58
22 BUTTERFIELD J D, KRYNKIN A, COLLINS R P, et al Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes[J]. Applied Acoustics, 2017, 199: 146- 155
23 JALIL M, BUTT F A, MALIK A. Short-time energy, magnitude, zero crossing rate and autocorrelation measurement for discriminating voiced and unvoiced segments of speech signals [C]// 2013 IEEE International Conference on Technological Advances in Electrical, Electronics and Computer Engineering . Konya: IEEE, 2013: 208–212.
24 CHUANG W Y, TSAI Y L, WANG L H. Leak detection in water distribution pipes based on CNN with Mel-frequency cepstral coefficients [C]// The 3rd International Conference on Innovation in Artificial Intelligence . Suzhou: [s.n.], 2019: 83–86.
[1] 王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1604-1617.
[2] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[3] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[4] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[5] 付晓峰,陈威岐,孙曜,潘宇泽. 基于双向编码表示转换的双模态软件分类模型[J]. 浙江大学学报(工学版), 2024, 58(11): 2239-2246.
[6] 耿志强,陈威,马波,韩永明. 基于连续小波卷积神经网络的轴承智能故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(10): 2069-2075.
[7] 宋昭漾,赵小强,惠永永,蒋红梅. 基于多级连续编码与解码的图像超分辨率重建算法[J]. 浙江大学学报(工学版), 2023, 57(9): 1885-1893.
[8] 王殿海,谢瑞,蔡正义. 基于最优汇集时间间隔的城市间断交通流预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1607-1617.
[9] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[10] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[11] 吕鑫栋,李娇,邓真楠,冯浩,崔欣桐,邓红霞. 基于改进Transformer的结构化图像超分辨网络[J]. 浙江大学学报(工学版), 2023, 57(5): 865-874.
[12] 张剑钊,郭继昌,汪昱东. 基于融合逆透射率图的水下图像增强算法[J]. 浙江大学学报(工学版), 2023, 57(5): 921-929.
[13] 周传华,操礼春,周家亿,詹凤. 图卷积融合计算时效网络节点重要性评估分析[J]. 浙江大学学报(工学版), 2023, 57(5): 930-938.
[14] 赵卿,张雪英,陈桂军,张静. 基于模态注意力图卷积特征融合的EEG和fNIRS情感识别[J]. 浙江大学学报(工学版), 2023, 57(10): 1987-1997.
[15] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.