Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2069-2075    DOI: 10.3785/j.issn.1008-973X.2024.10.010
机械工程、能源工程     
基于连续小波卷积神经网络的轴承智能故障诊断方法
耿志强1,2(),陈威1,2,马波3,韩永明1,2,*()
1. 北京化工大学 信息科学与技术学院,北京 100029
2. 智能过程系统工程教育部工程研究中心,北京 100029
3. 北京化工大学 机电工程学院,北京 100029
Bearing intelligent fault diagnosis method based on continuous wavelet convolutional neural network
Zhiqiang GENG1,2(),Wei CHEN1,2,Bo MA3,Yongming HAN1,2,*()
1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
2. Engineering Research Center of Intelligent Process Systems Engineering, Ministry of Education, Beijing 100029, China
3. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
 全文: PDF(1052 KB)   HTML
摘要:

传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法. 构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的计算空间,提高CNN的整体自适应性. 在凯斯西储大学轴承数据集上开展滚动轴承故障诊断方法对比实验. 结果表明,与传统基于CNN、快速傅里叶变换-CNN、长短时记忆-CNN故障诊断方法相比,所提方法的故障诊断精度分别提高了7.45、4.46和1.53个百分点,CNN的收敛速度更快. 在不同工况的泛化任务中,所提方法的平均准确率为99.64%,准确性和泛化能力良好.

关键词: 卷积神经网络(CNN)连续小波自适应激活函数轴承故障诊断    
Abstract:

A new bearing intelligent fault diagnosis method was proposed, aiming at the problems of limited feature extraction and inaccurate fault detection in traditional fault diagnosis methods. A continuous wavelet convolutional layer was constructed to replace the initial convolutional layer in the convolutional neural network (CNN) for extracting the primary features of the bearing data. The enhanced ACON activation function was used to process the extracted vibration signals. A new computational space was designed to improve the overall adaptivity of CNN. Comparative experiments of rolling bearing fault diagnosis methods based on the Case Western Reserve University bearing dataset were carried out. Experimental results showed that the fault diagnosis accuracy of the proposed method was improved by 7.45, 4.46 and 1.53 percentage points, respectively, and the convergence speed of CNN was faster compared with the traditional fault diagnosis methods based on CNN, the fast Fourier transform with CNN, the long short-term memory with CNN. In the generalization task for different working conditions, the proposed method had an average accuracy of 99.64%, demonstrating superior accuracy and generalisability.

Key words: convolutional neural network (CNN)    continuous wavelet    adaptive activation function    bearing    fault diagnosis
收稿日期: 2024-01-14 出版日期: 2024-09-27
CLC:  TH 133  
基金资助: 国家自然科学基金资助项目(62373035, 62273025).
通讯作者: 韩永明     E-mail: gengzhiqiang@mail.buct.edu.cn;hanym@mail.buct.edu.cn
作者简介: 耿志强(1973—),男,教授,博导,从事智能建模与故障诊断研究. orcid.org/0000-0003-0647-3792. E-mail:gengzhiqiang@mail.buct.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
耿志强
陈威
马波
韩永明

引用本文:

耿志强,陈威,马波,韩永明. 基于连续小波卷积神经网络的轴承智能故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(10): 2069-2075.

Zhiqiang GENG,Wei CHEN,Bo MA,Yongming HAN. Bearing intelligent fault diagnosis method based on continuous wavelet convolutional neural network. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2069-2075.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.010        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2069

图 1  卷积神经网络的结构
图 2  连续小波卷积神经网络训练振动信号的过程
网络层核大小NK输出大小
输入层1024
连续小波16×128
最大池化64×1×23216×64
卷积层64×1×33232×64
最大池化64×1×23232×32
卷积层64×1×36464×32
最大池化1×26464×16
全连接1001×100
输出层1010
表 1  连续小波卷积神经网络的结构参数
图 3  轴承试验台[21]
故障位置标签SF/mmA工况B工况C工况
ntrntentrntentrnte
正常0400100400100400100
外圈10.18400100400100400100
20.36400100400100400100
30.53400100400100400100
内圈40.18400100400100400100
50.36400100400100400100
60.53400100400100400100
70.18400100400100400100
80.36400100400100400100
滚动90.53400100400100400100
表 2  凯斯西储大学轴承数据集
图 4  添加小波核后的轴承故障诊断实验结果
图 5  未添加小波核的轴承故障诊断实验结果
方法Acc/%tc/ms
CNN92.4217.36
FFT-CNN95.4111.56
LSTM-CNN98.3414.32
CWCNN99.878.63
表 3  不同方法的轴承故障诊断结果对比
图 6  测试集轴承故障分类结果的混淆矩阵
方法Acc/%
a-ba-cb-ab-cc-ac-b
CWCNN99.8299.6599.7099.5399.5599.58
WKCNN99.3298.1599.4297.7199.1498.85
GhostCNN97.1696.8997.1897.8997.1497.26
MBDS-CNN99.1497.4299.1498.4298.8599.28
ILeNet-598.5696.8698.9598.2998.8598.43
表 4  不同方法在变工况下的诊断准确率
1 RANDALL R B, ANTONI J Rolling element bearing diagnostics: a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25 (2): 485- 520
doi: 10.1016/j.ymssp.2010.07.017
2 沈保明, 陈保家, 赵春华, 等 深度学习在机械设备故障预测与健康管理中的研究综述[J]. 机床与液压, 2021, 49 (19): 162- 171
SHEN Baoming, CHEN Baojia, ZHAO Chunhua, et al Review on the research of deep learning in mechanical equipment fault prognostics and health management[J]. Machine Tool and Hydraulics, 2021, 49 (19): 162- 171
doi: 10.3969/j.issn.1001-3881.2021.19.033
3 JUNG H, PARK M A study of big data-based machine learning techniques for wheel and bearing fault diagnosis[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2018, 19 (1): 75- 84
4 LEI Y, YANG B, JIANG X, et al Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587
doi: 10.1016/j.ymssp.2019.106587
5 温竹鹏, 陈捷, 刘连华, 等 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1212- 1219
WEN Zhupeng, CHEN Jie, LIU Lianhua, et al Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1212- 1219
6 BURRIEL-VALENCIA J, PUCHE-PANADERO R, MARTINEZ-ROMAN J, et al Short-frequency Fourier transform for fault diagnosis of induction machines working in transient regime[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (3): 432- 440
doi: 10.1109/TIM.2016.2647458
7 YIN Z, HOU J Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes[J]. Neurocomputing, 2016, 174: 643- 650
doi: 10.1016/j.neucom.2015.09.081
8 YAN K, JI Z, LU H, et al Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49 (7): 1349- 1356
9 金列俊, 詹建明, 陈俊华, 等 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (3): 467- 474
JIN Liejun, ZHAN Jianming, CHEN Junhua, et al Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 467- 474
10 ZHAO H, SUN S, JIN B Sequential fault diagnosis based on LSTM neural network[J]. IEEE Access, 2018, 6: 12929- 12939
doi: 10.1109/ACCESS.2018.2794765
11 XU Y, DENG Y, ZHAO J, et al A novel rolling bearing fault diagnosis method based on empirical wavelet transform and spectral trend[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (6): 2891- 2904
12 HUANG X, WEN G, LIANG L, et al Frequency phase space empirical wavelet transform for rolling bearings fault diagnosis[J]. IEEE Access, 2019, 7: 86306- 86318
doi: 10.1109/ACCESS.2019.2922248
13 LI X, MA Z, KANG D, et al Fault diagnosis for rolling bearing based on VMD-FRFT[J]. Measurement, 2020, 155: 107554
doi: 10.1016/j.measurement.2020.107554
14 ZHANG N, WU L, YANG J, et al Naive bayes bearing fault diagnosis based on enhanced independence of data[J]. Sensors, 2018, 18 (2): 463
doi: 10.3390/s18020463
15 YE M, YAN X, JIA M Rolling bearing fault diagnosis based on VMD-MPE and PSO-SVM[J]. Entropy, 2021, 23 (6): 762
doi: 10.3390/e23060762
16 MA J, YU S, CHENG W Composite fault diagnosis of rolling bearing based on chaotic honey badger algorithm optimizing VMD and ELM[J]. Machines, 2022, 10 (6): 469
doi: 10.3390/machines10060469
17 XU G, LIU M, JIANG Z, et al Online fault diagnosis method based on transfer convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (2): 509- 520
18 YANG J, LIU J, XIE J, et al Conditional GAN and 2-D CNN for bearing fault diagnosis with small samples[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3525712
19 WANG H, XU J, YAN R, et al A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (5): 2377- 2389
20 MAO G, ZHANG Z, QIAO B, et al Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions[J]. Entropy, 2022, 24 (1): 119
doi: 10.3390/e24010119
21 NEUPANE D, SEOK J Bearing fault detection and diagnosis using Case Western Reserve University dataset with deep learning approaches: a review[J]. IEEE Access, 2020, 8: 93155- 93178
22 MA N, ZHANG X, LIU M, et al. Activate or not: learning customized activation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 8032–8042.
23 尹文哲, 夏虹, 彭彬森, 等 基于FFT和CNN的滚动轴承故障诊断方法[J]. 应用科技, 2021, 48 (6): 97- 101
YIN Wenzhe, XIA Hong, PENG Binsen, et al A fault diagnosis method of rolling bearing based on FFT and CNN[J]. Applied Science and Technology, 2021, 48 (6): 97- 101
doi: 10.11991/yykj.202101004
24 GAO Y, PING G, LI L. An end-to-end model based on CNN-LSTM for industrial fault diagnosis and prognosis [C]// 2018 International Conference on Network Infrastructure and Digital Content . Guiyang: IEEE, 2018: 274–278.
25 黄海 基于WKCNN的风电机组轴承声信号故障诊断研究[J]. 电子技术与软件工程, 2023, (2): 97- 100
HUANG Hai Fault diagnosis of wind turbine bearing acoustic signal based on WKCNN[J]. Electronic Technology and Software Engineering, 2023, (2): 97- 100
26 HAN K, WANG Y, TIAN Q, et al. GhostCNN: more features from cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 1580–1589.
27 刘恒畅, 姚德臣, 杨建伟, 等 基于多分支深度可分离卷积神经网络的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40 (10): 95- 102
LIU Hengchang, YAO Dechen, YANG Jianwei, et al Fault diagnosis of rolling bearings based on a multi branch depth separable convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40 (10): 95- 102
[1] 章晨昕,洪伟荣,郑水英. 三楔气体轴承的动静压特性分析[J]. 浙江大学学报(工学版), 2024, 58(9): 1970-1980.
[2] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[3] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[4] 唐洪洲,周瑾,金超武,徐园平. 基于LC并联谐振的轴向自感式位移传感器设计[J]. 浙江大学学报(工学版), 2024, 58(5): 1072-1079.
[5] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[6] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.
[7] 潘裕斌,王华,陈捷,洪荣晶. 基于核极限学习机自编码器的转盘轴承寿命状态识别[J]. 浙江大学学报(工学版), 2022, 56(9): 1856-1866.
[8] 莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
[9] 袁天乐,袁巨龙,朱勇建,郑翰辰. 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2349-2357.
[10] 牛英杰,苏燕辰,程敦诚,廖家,赵海波,高永强. 高铁接触网U型抱箍螺母故障检测算法[J]. 浙江大学学报(工学版), 2021, 55(10): 1912-1921.
[11] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[12] 张彦楠,黄小红,马严,丛群. 基于深度学习的录音文本分类方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1264-1271.
[13] 吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.
[14] 杨萍,王丹,康子健,李童,付利华,余悦任. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 1039-1048.
[15] 关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.