Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (5): 1072-1079    DOI: 10.3785/j.issn.1008-973X.2024.05.020
机械工程     
基于LC并联谐振的轴向自感式位移传感器设计
唐洪洲(),周瑾*(),金超武,徐园平
南京航空航天大学 机电学院,江苏 南京 210016
Design of axial self-inductive displacement sensor based on LC parallel resonance
Hongzhou TANG(),Jin ZHOU*(),Chaowu JIN,Yuanping XU
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(1987 KB)   HTML
摘要:

为了满足磁悬浮轴承面向更高精度的发展需求,提出基于LC并联谐振的轴向自感式位移传感器. 通过增大谐振回路的等效电感变化率,提高传感器的灵敏度. 分析传感器的工作原理. 通过有限元仿真,研究传感器设计参数与灵敏度之间的关系. 设计传感器的测量电路,结合有限元仿真和数值仿真,分析LC并联谐振对传感器灵敏度的影响. 搭建实验台,对传感器的静态性能进行测试. 结果表明,相对于传统的位移传感器,提出的传感器具有更高的灵敏度与更低的线性度.

关键词: 位移传感器并联谐振测量电路灵敏度磁悬浮轴承    
Abstract:

An axial self-inductive displacement sensor based on LC parallel resonance was proposed in order to meet the development demands for higher precision in magnetic bearings. The sensitivity of the sensor was improved by increasing the rate of change of equivalent inductance in the resonance circuit. The working principle of the sensor was analyzed. The relationship between the design parameters of the sensor and its sensitivity was analyzed through finite element simulation. Then a measurement circuit for the sensor was designed, and the influence of LC parallel resonance on the sensitivity of the sensor was analyzed combined with finite element simulation and numerical simulation. An experimental setup was constructed to test the static performance of the sensor. Results show that the proposed sensor exhibits higher sensitivity and lower linearity compared with traditional displacement sensors.

Key words: displacement sensor    parallel resonance    measurement circuit    sensitivity    magnetic bearing
收稿日期: 2023-05-10 出版日期: 2024-04-26
CLC:  TP 212  
基金资助: 国家自然科学基金资助项目(52075239, 52275537).
通讯作者: 周瑾     E-mail: hztang@nuaa.edu.cn;zhj@nuaa.edu.cn
作者简介: 唐洪洲(1999—),男,硕士生,从事传感器技术的研究. orcid.org/0009-0007-5428-5004.E-mail:hztang@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
唐洪洲
周瑾
金超武
徐园平

引用本文:

唐洪洲,周瑾,金超武,徐园平. 基于LC并联谐振的轴向自感式位移传感器设计[J]. 浙江大学学报(工学版), 2024, 58(5): 1072-1079.

Hongzhou TANG,Jin ZHOU,Chaowu JIN,Yuanping XU. Design of axial self-inductive displacement sensor based on LC parallel resonance. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1072-1079.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I5/1072

图 1  轴向自感式位移传感器的结构图
图 2  传感器的磁路图
图 3  有限元仿真模型
参数数值
气隙长度lg/mm0.5
重叠长度lo/mm1
激励频率f/kHz25
匝数N420
磁极高度h/mm8
磁极宽度b/mm5.5
磁极轴向长度d/mm3.5
传感器外径r1/mm44
传感器内径r2/mm29.75
磁极间夹角θ/(°)23
表 1  传感器设计参数
图 4  电感变化率随转子位移的变化趋势
图 5  电感变化灵敏度随气隙长度的变化趋势
图 6  电感变化灵敏度随重叠长度的变化趋势
图 7  电感变化灵敏度随激励频率的变化趋势
图 8  测量电路的示意图
图 9  调制电路的拓扑结构
图 10  并联谐振电路
图 11  电路A在不同频率下输出电压随位移的变化
图 12  电路B在不同频率下输出电压随位移的变化
图 13  电路C在不同频率下输出电压随位移的变化
f/kHzKo/(V·mm?1)RMSE
51.36386.995×10?3
251.50651.667×10?2
501.53642.175×10?2
751.54992.432×10?2
1001.55832.602×10?2
表 2  不同激励频率下的灵敏度与RMSE
图 14  不同谐振频率下输出电压的变化特性
fres/kHzKo/(V·mm?1)RMSE
190.22791.417×10?3
200.30581.875×10?3
210.43312.618×10?3
220.67594.408×10?3
231.27411.123×10?2
表 3  不同谐振频率下的灵敏度与RMSE
图 15  电感变化测试平台
图 16  电感变化率随转子位移的变化趋势
图 17  静态性能测试平台
图 18  传感器的输出特性
图 19  迟滞性曲线
传感器类型Ko/(V·mm?1)eL/%
电涡流传感器[26]1.810.26
全桥径向电感式位移传感器[22]15.60
全桥轴向电感式位移传感器[19]2.630.46
本文所设计的传感器24.490.23
表 4  本文所设计的传感器与其他类似传感器的比较
1 ROYO-SILVESTRE I, BEATO-LOPEZ J J, CASTELLANO-ALDAVE J C, et al Thrust actuator with passive restoration force for wide gap magnetic bearings[J]. Journal of Magnetism and Magnetic Materials, 2019, 476: 342- 348
doi: 10.1016/j.jmmm.2018.12.085
2 SONI T, DUTT J K, DAS A S Parametric stability analysis of active magnetic bearing supported rotor system with a novel control law subject to periodic base motion[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (2): 1160- 1170
doi: 10.1109/TIE.2019.2898604
3 WANG K, MA X, LIU Q, et al Multiphysics global design and experiment of the electric machine with a flexible rotor supported by active magnetic bearing[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24 (2): 820- 831
doi: 10.1109/TMECH.2019.2892392
4 SUN J, ZHOU H, JU Z Dynamic stiffness analysis and measurement of radial active magnetic bearing in magnetically suspended molecular pump[J]. Scientific Reports, 2020, 10 (1): 1401
doi: 10.1038/s41598-020-57523-8
5 URRETA H, AGUIRRE G, KUZHIR P, et al Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools[J]. Journal of Intelligent Material Systems and Structures, 2019, 30 (15): 2257- 2271
doi: 10.1177/1045389X19862358
6 GUAN X, ZHOU J, JIN C, et al Adaptive surge detection of magnetic suspension centrifugal blower based on rotor radial displacement signal and SOGI-FLL with prefilter[J]. Measurement Science and Technology, 2022, 33 (6): 065304
doi: 10.1088/1361-6501/ac5a9a
7 CAI K, DENG Z, PENG C, et al Suppression of harmonic vibration in magnetically suspended centrifugal compressor using zero-phase odd-harmonic repetitive controller[J]. IEEE Transactions on Industrial Electronics, 2019, 67 (9): 7789- 7797
8 ZHU H, LIU T Rotor displacement self-sensing modeling of Six-Pole radial hybrid magnetic bearing using improved particle swarm optimization support vector machine[J]. IEEE Transactions on Power Electronics, 2020, 35 (11): 12296- 12306
doi: 10.1109/TPEL.2020.2982746
9 ZHENG S, WANG C Rotor balancing for magnetically levitated TMPs integrated with vibration self-sensing of magnetic bearings[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26 (6): 3031- 3039
doi: 10.1109/TMECH.2021.3051372
10 BONFITTO A, GABAI R, TONOLI A, et al Resonant inductive displacement sensor for active magnetic bearings[J]. Sensors and Actuators A: Physical, 2019, 287: 84- 92
doi: 10.1016/j.sna.2019.01.011
11 LI W, HU J, SU Z, et al Radial displacement detection using sensing coils weakly coupled with magnetic bearing[J]. IEEE Sensors Journal, 2022, 22 (21): 20352- 20359
doi: 10.1109/JSEN.2022.3206112
12 REN Z, LI H, CHEN X, et al Impedance modeling of self-inductive displacement sensor considering iron core reluctance and flux leakage[J]. IEEE Sensors Journal, 2022, 22 (9): 8583- 8595
doi: 10.1109/JSEN.2022.3161323
13 WANG K, ZHANG L, LE Y, et al Optimized differential self-inductance displacement sensor for magnetic bearings: design, analysis and experiment[J]. IEEE Sensors Journal, 2017, 17 (14): 4378- 4387
doi: 10.1109/JSEN.2017.2710135
14 YU J, ZHOU Y, MO N, et al Theoretical and experimental analysis on the influence of rotor non-mechanical errors of the inductive transducer in active magnetic bearings[J]. Sensors (Basel, Switzerland), 2018, 18 (12): 4376
doi: 10.3390/s18124376
15 REN Z, LI H, YU W Research on coil impedance of self-inductive displacement sensor considering core eddy current[J]. Sensors, 2021, 21 (18): 6292
doi: 10.3390/s21186292
16 LI H, REN Z, CHEN R, et al Influence of structural parameters on the static performance of self-inductive radial displacement sensor[J]. Measurement Science and Technology, 2022, 33 (12): 125106
doi: 10.1088/1361-6501/ac8d21
17 时振刚, 周燕, 赵晶晶, 等. 基于自感式可测量转子径轴向位移的新型传感器[C]//全国新堆与研究堆学术会议. 伊犁: 中国核学会, 2006.
SHI Zhengang, ZHOU Yan, ZHAO Jingjing, et al. A new sensor based on self-inductive measurement of rotor radial and axial displacement [C]// National Symposium on Advanced Reactors and Research Reactors . Ili: China Nuclear Society, 2006.
18 SILLANPÄÄ T, SMIRNOV A, JAATINEN P, et al Three-axis inductive displacement sensor using phase-sensitive digital signal processing for industrial magnetic bearing applications[J]. Actuators, 2021, 10 (6): 115
doi: 10.3390/act10060115
19 LI W, HU J, SU Z, et al Analysis and design of axial inductive displacement sensor[J]. Measurement, 2022, 187: 110159
doi: 10.1016/j.measurement.2021.110159
20 CHEN S C, LE D K, NGUYEN V S Inductive displacement sensors with a notch filter for an active magnetic bearing system[J]. Sensors, 2014, 14 (7): 12640- 12657
doi: 10.3390/s140712640
21 刘亚婷, 张剀, 徐旸 基于集成解调芯片的电感式位移传感器[J]. 储能科学与技术, 2019, 8 (5): 891- 896
LIU Yating, ZHANG Kai, XU Yang Inductive displacement sensors based on the integrated demodulation chip[J]. Energy Storage Science and Technology, 2019, 8 (5): 891- 896
22 HU J, LI W, SU Z, et al Analytical design and experiment of radial inductive displacement sensor with full-bridge structure for magnetic bearings[J]. The Review of Scientific Instruments, 2021, 92 (6): 064703
doi: 10.1063/5.0047059
23 WANG H, JU B, LI W, et al Ultrastable eddy current displacement sensor working in harsh temperature environments with comprehensive self-temperature compensation[J]. Sensors and Actuators A: Physical, 2014, 211 (5): 98- 104
24 CAO Z, HUANG Y, PENG F, et al Driver circuit design for a new eddy current sensor in displacement measurement of active magnetic bearing systems[J]. IEEE Sensors Journal, 2022, 22 (17): 16945- 16951
doi: 10.1109/JSEN.2022.3194567
25 BLEULER H, COLE M, KEOGH P, et al. Magnetic bearings: theory, design, and application to rotating machinery [M]. Heidelberg: Springer, 2009.
[1] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[2] 王冠中,王奕鑫,但扬清,何英静,吴浩. 直流多馈入系统电压稳定主导模式定性分析[J]. 浙江大学学报(工学版), 2023, 57(3): 616-624.
[3] 郭小辉,洪炜强,郑国庆,王景溢,唐国鹏,杨金阳,卓超强,许耀华,赵雨农,张红伟. 分级倾斜微圆柱结构的高灵敏度柔性触觉传感器[J]. 浙江大学学报(工学版), 2022, 56(6): 1079-1087, 1126.
[4] 李颖,王冠雄,闫伟,赵营鸽,马重蕾. 改进的稀疏网格配点法对EIT电导率分布的不确定性量化[J]. 浙江大学学报(工学版), 2022, 56(3): 613-621.
[5] 马浩然,丁雅斌. 基于双目视觉的激光位移传感器标定方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1634-1642.
[6] 吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.
[7] 关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.
[8] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[9] 程锋,张栋,唐硕. 高超声速运载器宽速域气动/推进耦合建模与分析[J]. 浙江大学学报(工学版), 2019, 53(5): 1006-1018.
[10] 周云峰,周永潮,郑春华,翁献明,马晓宇,柳景青. 采用Sobol方法的暴雨径流管理模型参数灵敏度分析[J]. 浙江大学学报(工学版), 2019, 53(2): 347-354.
[11] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[12] 崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.
[13] 潘秋萍, 汪震, 甘德强, 谢欢, 李尚远. 基于数值微分的阻尼灵敏度方法比较[J]. 浙江大学学报(工学版), 2018, 52(1): 174-183.
[14] 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 一移两转平板折展柔性铰链的建模及优化[J]. 浙江大学学报(工学版), 2017, 51(12): 2399-2407.
[15] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.