Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 616-624    DOI: 10.3785/j.issn.1008-973X.2023.03.020
电气工程     
直流多馈入系统电压稳定主导模式定性分析
王冠中1(),王奕鑫1,但扬清2,何英静2,吴浩1
1. 浙江大学 电气工程学院,浙江 杭州 310027
2. 国网浙江省电力公司经济技术研究院,浙江 杭州 310008
Qualitative analysis of critical mode for voltage stability in multi-infeed DC system
Guan-zhong WANG1(),Yi-xin WANG1,Yang-qing DAN2,Ying-jing HE2,Hao WU1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. Economic Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310008, China
 全文: PDF(1332 KB)   HTML
摘要:

从矩阵消元的视角系统阐述在交直流系统电压稳定分析中雅克比矩阵的推导方法. 利用交流侧雅克比矩阵主导模态灵敏度的符号分布性质,定性分析直流不同控制方式对系统电压稳定裕度的影响规律. 将多种LCC-HVDC控制方式下的雅克比矩阵推导过程统一表示为对四阶雅克比矩阵的矩阵消元过程,从矩阵分析的角度统一LCC-HVDC电压稳定建模过程. 将交流戴维南等值电路雅克比矩阵主导模态的灵敏度具有符号分布性质的证明补充完整,据此定性分析不同控制方式的直流系统接入受端交流网络后系统稳定裕度的变化趋势. 通过Cigre标准系统算例验证所提方法的有效性.

关键词: 直流多馈入系统静态电压稳定性雅克比矩阵控制方式灵敏度    
Abstract:

The derivation method of the Jacobian matrix in voltage stability analysis of AC/DC power systems was systematically elucidated from the perspective of matrix elimination. The sign distribution property of the dominant modal sensitivity of the AC-side Jacobian matrix was utilized to qualitatively analyze the impact of different control modes of LCC-HVDC on the system voltage stability margin. Firstly, the Jacobian matrix derivation process under multiple LCC-HVDC control modes was uniformly expressed as the matrix elimination process of the fourth-order Jacobian matrix. Secondly, the complete proof of the sign distribution property of the dominant modal sensitivity of the Jacobian matrix in the AC Thevenin equivalent circuit was supplemented, based on which the change trend of the system stability margin at the receiving end AC system with different control modes was qualitatively analyzed. Finally, the effectiveness of the proposed method was verified by a Cigre standard system model.

Key words: multi-infeed DC system    static voltage stability    Jacobian matrix    control mode    sensitivity
收稿日期: 2022-03-02 出版日期: 2023-03-31
CLC:  TU 111  
基金资助: 国网浙江电力科技资助项目(2021ZK10)
作者简介: 王冠中(1990—),男,博士后,从事交直流电力系统动态分析研究. orcid.org/0000-0003-4587-8354.E-mail: eegzwang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王冠中
王奕鑫
但扬清
何英静
吴浩

引用本文:

王冠中,王奕鑫,但扬清,何英静,吴浩. 直流多馈入系统电压稳定主导模式定性分析[J]. 浙江大学学报(工学版), 2023, 57(3): 616-624.

Guan-zhong WANG,Yi-xin WANG,Yang-qing DAN,Ying-jing HE,Hao WU. Qualitative analysis of critical mode for voltage stability in multi-infeed DC system. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 616-624.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.020        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/616

图 1  LCC-HVDC单馈入系统准稳态模型
图 2  多馈入HVDC系统
图 3  本研究所提方法说明框图
控制方式 $ {J'_{{P_d}U}} $ $ {J'_{{Q_d}U}} $
CP-CEA 0 0.4830
CC-CEA 1.1032 ?0.3645
CP-CV 0 ?2.3664
CC-CV 0 ?2.3664
表 1  CIGRE标准直流测试系统在4种控制方式下的电压灵敏度计算结果
图 4  雅可比矩阵奇异性与短路比关系
图 5  不同控制下LCC-HVDC馈入系统交流电压响应
图 6  雅可比矩阵元素分布
图 7  两馈入系统时域仿真
1 程浩忠, 李隽, 吴耀武, 等 考虑高比例可再生能源的交直流输电网规划挑战与展望[J]. 电力系统自动化, 2017, 41 (9): 19- 27
CHENG Hao-zhong, LI Jun, WU Yao-wu, et al Challenges and prospects for AC/DC transmission expansion planning considering high proportion of renewable energy[J]. Automation of Electric Power System, 2017, 41 (9): 19- 27
2 汤涌. 电力系统电压稳定性分析[M]. 北京: 科学出版社, 2011.
3 WANG Y, PORDANJANI I R, LI W, et al Voltage stability monitoring based on the concept of coupled single-port circuit[J]. IEEE Transactions on Power Systems, 2011, 26 (4): 2154- 2163
doi: 10.1109/TPWRS.2011.2154366
4 WU D, WOLTER F E, WANG B, et al Searching for the shortest path to voltage instability boundary: from Euclidean space to algebraic manifold[J]. International Journal of Electrical Power and Energy Systems, 2021, 131: 107127
doi: 10.1016/j.ijepes.2021.107127
5 SIMPSON-PORCO J W, DÖRFLER F, BULLO F Voltage stabilization in microgrids via quadratic droop control[J]. IEEE Transactions on Automatic Control, 2017, 62 (3): 1239- 1253
doi: 10.1109/TAC.2016.2585094
6 GUPTA N, TIWARI B N, BELLUCCI S Intrinsic geometric analysis of the network reliability and voltage stability[J]. International Journal of Electrical Power and Energy Systems, 2013, 44 (1): 872- 879
doi: 10.1016/j.ijepes.2012.08.032
7 SIMPSON-PORCO J W, DÖRFLER F, BULLO F Voltage collapse in complex power grids[J]. Nature communications, 2016, 7: 10790
doi: 10.1038/ncomms10790
8 BEGOVIC M M, PHADKE A G Control of voltage stability using sensitivity analysis[J]. IEEE Transactions on Power Systems, 1992, 7 (1): 114- 123
doi: 10.1109/59.141694
9 LEE D H A Voltage stability assessment using equivalent nodal analysis[J]. IEEE Transactions on Power Systems, 2016, 31 (1): 454- 463
doi: 10.1109/TPWRS.2015.2402436
10 XIAO H, LI Y, SUN X Strength evaluation of multi-infeed LCC-HVDC systems based on the virtual impedance concept[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 2863- 2875
doi: 10.1109/TPWRS.2019.2960298
11 郭小颖, 唐俊杰, 舒铜, 等 基于改进模态分析法的柔性多端交直流混联系统静态电压稳定性评估[J]. 电工技术学报, 2021, 36 (17): 3741- 3752
GUO Xiao-ying, TANG Jun-jie, SHU Tong, et al Static voltage stability assessment on hybrid alternating current/voltage source converter-multiple terminal direct current system using improved modal analysis[J]. Transactions of China Electrotechnical Society, 2021, 36 (17): 3741- 3752
doi: 10.19595/j.cnki.1000-6753.tces.201031
12 XU W, PORDANJANI I R, WANG Y, et al A network decoupling transform for phasor data based voltage stability analysis and monitoring[J]. IEEE Transactions on Smart Grid, 2012, 3 (1): 261- 270
doi: 10.1109/TSG.2011.2163175
13 KESSEL P, GLAVITSCH H Estimating the voltage stability of a power system[J]. IEEE Transactions on Power Delivery, 1986, 1 (3): 346- 354
doi: 10.1109/TPWRD.1986.4308013
14 LOF P A, ANDERSSON G, HILL D J Voltage stability indices for stressed power systems[J]. IEEE Transactions on Power Systems, 1993, 8 (1): 326- 335
doi: 10.1109/59.221224
15 章枫, 辛焕海, 徐谦, 等 直流多馈入系统的广义短路比: 影响因素分析[J]. 中国电机工程学报, 2017, 37 (18): 5303- 5312+S11
ZHANG Feng, XIN Huan-hai, XU Qian, et al Generalized short circuit ratio for multi-infeed DC systems: influence factors[J]. Proceedings of the CSEE, 2017, 37 (18): 5303- 5312+S11
16 LI D, SUN M, FU Y A general steady-state voltage stability analysis for hybrid multi-infeed HVDC systems[J]. IEEE Transactions on Power Delivery, 2021, 36 (3): 1302- 1312
doi: 10.1109/TPWRD.2020.3006027
17 辛焕海, 章枫, 于洋, 等 多馈入直流系统广义短路比: 定义与理论分析[J]. 中国电机工程学报, 2016, 36 (3): 633- 647
XIN Huan-hai, ZHANG Feng, YU Yang, et al Generalized short circuit ratio for multi-infeed DC system: definition and theoretical analysis[J]. Proceedings of the CSEE, 2016, 36 (3): 633- 647
18 XIAO H, LI Y, SHI D, et al Evaluation of strength measure for static voltage stability analysis of hybrid multi-infeed DC systems[J]. IEEE Transactions on Power Delivery, 2019, 34 (3): 879- 890
doi: 10.1109/TPWRD.2019.2901831
19 LEE D H A, ANDERSSON G. An equivalent single-infeed model of multi-infeed HVDC systems for voltage and power stability analysis [J]. IEEE Transaction on Power Delivery, 2016, 31(1): 303-312.
20 HORN R A, JOHNSON C R. Topics in matrix analysis [M]. Cambridge: Cambridge University Press, 1991.
21 郭小江, 郭剑波, 王成山 考虑直流输电系统外特性影响的多直流馈入短路比实用计算方法[J]. 中国电机工程学报, 2015, 35 (9): 2143- 2151
GUO Xiao-jiang, GUO Jian-bo, WANG Cheng-shan Practical calculation method for multi-infeed short circuit ratio influenced by characteristics of external characteristics of DC system[J]. Proceedings of the CSEE, 2015, 35 (9): 2143- 2151
22 徐政. 交直流电力系统动态行为分析[M]. 北京: 机械工业出版社, 2004.
23 陈修宇. 多馈入直流系统电压相互作用及其影响[D]. 北京: 华北电力大学, 2012.
CHEN Xiu-yu. The voltage interaction in multi-infeed HVDC systems and its influence [D]. Beijing: North China Electric Power University, 2012.
[1] 郭小辉,洪炜强,郑国庆,王景溢,唐国鹏,杨金阳,卓超强,许耀华,赵雨农,张红伟. 分级倾斜微圆柱结构的高灵敏度柔性触觉传感器[J]. 浙江大学学报(工学版), 2022, 56(6): 1079-1087, 1126.
[2] 李颖,王冠雄,闫伟,赵营鸽,马重蕾. 改进的稀疏网格配点法对EIT电导率分布的不确定性量化[J]. 浙江大学学报(工学版), 2022, 56(3): 613-621.
[3] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[4] 蒋君侠,董琛,边晨,董辉跃. 卧式双机联合自动钻铆系统综合刚度研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1110-1118.
[5] 程锋,张栋,唐硕. 高超声速运载器宽速域气动/推进耦合建模与分析[J]. 浙江大学学报(工学版), 2019, 53(5): 1006-1018.
[6] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[7] 周云峰,周永潮,郑春华,翁献明,马晓宇,柳景青. 采用Sobol方法的暴雨径流管理模型参数灵敏度分析[J]. 浙江大学学报(工学版), 2019, 53(2): 347-354.
[8] 潘秋萍, 汪震, 甘德强, 谢欢, 李尚远. 基于数值微分的阻尼灵敏度方法比较[J]. 浙江大学学报(工学版), 2018, 52(1): 174-183.
[9] 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 一移两转平板折展柔性铰链的建模及优化[J]. 浙江大学学报(工学版), 2017, 51(12): 2399-2407.
[10] 臧勇, 赵泽波, 秦勤, 于洋. 奥氏体晶粒尺寸对工艺参数的灵敏度方程及应用[J]. 浙江大学学报(工学版), 2015, 49(4): 662-669.
[11] 吕云腾, 祝长生. 基于温漂补偿的高温电涡流位移传感器[J]. 浙江大学学报(工学版), 2015, 49(4): 749-753.
[12] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(7): 2-.
[13] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(12): 2115-2122.
[14] 张永顺,满达,郑鹏,郭建超,邓宗全,唐德威. 高集成三自由度解耦球型手腕[J]. 浙江大学学报(工学版), 2014, 48(11): 2025-2030.
[15] 尹喜珍, 马成炎, 叶甜春, 肖时茂, 于云丰. 高灵敏度GNSS接收机频率合成器设计[J]. J4, 2013, 47(1): 70-76.