智能机器人 |
|
|
|
|
分级倾斜微圆柱结构的高灵敏度柔性触觉传感器 |
郭小辉1,2( ),洪炜强1,郑国庆3,王景溢3,唐国鹏1,杨金阳1,卓超强1,许耀华1,赵雨农4,张红伟1,*( ) |
1. 安徽大学 电子信息工程学院,安徽 合肥 230601 2. 目标探测与特征提取安徽省重点实验室,安徽 六安 237010 3. 华东光电集成器件研究所,江苏 苏州 215163 4. 华中科技大学 光学与电子信息学院,湖北 武汉 430074 |
|
High sensitivity flexible tactile sensor with hierarchical tilted micro-pillar structure |
Xiao-hui GUO1,2( ),Wei-qiang HONG1,Guo-qing ZHENG3,Jing-yi WANG3,Guo-peng TANG1,Jin-yang YANG1,Chao-qiang ZHUO1,Yao-hua XU1,Yu-nong ZHAO4,Hong-wei ZHANG1,*( ) |
1. School of Electronic Information Engineering, Anhui University, Hefei 230601, China 2. Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Lu’an 237010, China 3. East China Institute of Optoelectronic Integrated Devices, Suzhou 215163, China 4. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
郭小辉,洪炜强,郑国庆,王景溢,唐国鹏,杨金阳,卓超强,许耀华,赵雨农,张红伟. 分级倾斜微圆柱结构的高灵敏度柔性触觉传感器[J]. 浙江大学学报(工学版), 2022, 56(6): 1079-1087, 1126.
Xiao-hui GUO,Wei-qiang HONG,Guo-qing ZHENG,Jing-yi WANG,Guo-peng TANG,Jin-yang YANG,Chao-qiang ZHUO,Yao-hua XU,Yu-nong ZHAO,Hong-wei ZHANG. High sensitivity flexible tactile sensor with hierarchical tilted micro-pillar structure. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1079-1087, 1126.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.004
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1079
|
1 |
WANG Y, CHEN Z, MEI D, et al Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection[J]. Composites Science and Technology, 2022, 217: 109078
doi: 10.1016/j.compscitech.2021.109078
|
2 |
ZHOU Q, JI B, WEI Y Z, et al A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range[J]. Journal of Materials Chemistry A, 2019, 7 (48): 27334- 27346
doi: 10.1039/C9TA10489E
|
3 |
JI B, ZHOU Q, Wu J, et al Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array[J]. ACS Applied Materials and Interfaces, 2020, 12 (27): 31021- 31035
doi: 10.1021/acsami.0c08910
|
4 |
CAI L, CHEN G, TIAN J, et al Three-dimensional printed ultrahighly sensitive bioinspired ionic skin based on submicrometer-scale structures by polymerization shrinkage[J]. Chemistry of Materials, 2021, 33 (6): 2072- 2079
doi: 10.1021/acs.chemmater.0c04581
|
5 |
ZHAO X F, HANG C Z, LU H L, et al A skin-like sensor for intelligent braille recognition[J]. Nano Energy, 2019, 68: 104346
|
6 |
XIA T, YU R, YUAN J, et al Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins[J]. Advanced Materials Technologies, 2021, 6 (3): 2000984
doi: 10.1002/admt.202000984
|
7 |
QIU Y, TIAN Y, SUN S, et al Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions[J]. Nano Energy, 2020, 78: 105337
doi: 10.1016/j.nanoen.2020.105337
|
8 |
ZHAO X F, WEN X H, SUN P, et al. Spider web-like flexible tactile sensor for pressure-strain simultaneous detection [J]. ACS Applied Materials and Interfaces, 13(8): 10428-10436.
|
9 |
LU Y, HE Y, QIAO J, et al Highly sensitive interlocked piezoresistive sensors based on ultrathin ordered nanocone array films and their sensitivity simulation[J]. ACS Applied Materials and Interfaces, 2020, 12 (49): 55169- 55180
doi: 10.1021/acsami.0c16456
|
10 |
JEONG Y, GU J, BYUN J, et al Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring[J]. Advanced Healthcare Materials, 2021, 10 (9): 2001461
doi: 10.1002/adhm.202001461
|
11 |
AMOLI V, KIM J S, JEE E, et al A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin[J]. Nature Communications, 2019, 10 (1): 4019
doi: 10.1038/s41467-019-11973-5
|
12 |
QU C, WANG S, LIU L, et al Bioinspired flexible volatile organic compounds sensor based on dynamic surface wrinkling with dual-signal response[J]. Small, 2019, 15 (17): 1900216
doi: 10.1002/smll.201900216
|
13 |
ZHAO S F, RAN W H, WANG D P, et, al 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12 (28): 32023- 32030
doi: 10.1021/acsami.0c09893
|
14 |
XIONG Y, SHEN Y, TIAN L, et al A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70: 104436
doi: 10.1016/j.nanoen.2019.104436
|
15 |
TANG Z, JIA S, ZHOU C, et al 3D printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect[J]. ACS Applied Materials and Interfaces, 2020, 12 (25): 28669- 28680
doi: 10.1021/acsami.0c06977
|
16 |
WANG C, XIA K, ZHANG M, et al An all silk-derived dual-mode E-skin for simultaneous temperature-pressure detection[J]. ACS Applied Materials and Interfaces, 2017, 45: 39484- 39492
|
17 |
LI X, JI D, YU B, et al Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal, 2021, 12 (426): 130345
|
18 |
LI L, FU X, CHEN S, et al Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12 (13): 15362- 15369
doi: 10.1021/acsami.0c00255
|
19 |
LIU Y, BAO R, TAO J, et al Recent progress in tactile sensors and their applications in intelligent systems[J]. Science Bulletin, 2020, 65 (1): 70- 88
doi: 10.1016/j.scib.2019.10.021
|
20 |
RUTH S R A, FEIG V R, TRAN H, et al Microengineering pressure sensor active layers for improved performance[J]. Advanced Functional Materials, 2020, 30 (39): 2003491
doi: 10.1002/adfm.202003491
|
21 |
HWANG J, KIM Y, YANG H, et al Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B: Engineering, 2021, 211: 108607
doi: 10.1016/j.compositesb.2021.108607
|
22 |
HE F, YOU X, WANG W, et al Recent progress in flexible microstructural pressure sensors toward human-machine interaction and healthcare applications[J]. Small Methods, 2021, 5 (3): 2001041
doi: 10.1002/smtd.202001041
|
23 |
LI S, R LI, CHEN T, et al Highly sensitive and flexible capacitive pressure sensor enhanced by weaving of pyramidal concavities staggered in honeycomb matrix[J]. IEEE Sensors Journal, 2020, 20 (23): 14436- 14443
doi: 10.1109/JSEN.2020.3008474
|
24 |
RUTH S R A, BEKER L, TRAN H, et al Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals[J]. Advanced Functional Materials, 2019, 30 (29): 1903100
|
25 |
WAN Y, QIU Z, HONG Y, et al A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4 (4): 1700586
doi: 10.1002/aelm.201700586
|
26 |
NIU H, GAO S, YUE W, et al Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure[J]. Small, 2020, 16 (4): 1904774
doi: 10.1002/smll.201904774
|
27 |
KIM Y, YANG H, OH J H Simple fabrication of highly sensitive capacitive pressure sensors using a porous dielectric layer with cone-shaped patterns[J]. Materials and Design, 2020, 197: 109203
|
28 |
ATALAY O, ATALAY A, GAFFORD J, et al A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer[J]. Advanced Materials Technologies, 2018, 3 (1): 1700237
doi: 10.1002/admt.201700237
|
29 |
KIM H, KIM G, KIM T, et al Transparent, flexible, conformal capacitive pressure sensors with nanoparticles[J]. Small, 2018, 14 (8): 1703432
doi: 10.1002/smll.201703432
|
30 |
LUO Y, SHAO J, CHEN S, et al Flexible capacitive pressure sensor enhanced by tilted micropillar arrays[J]. ACS Applied Materials and Interfaces, 2019, 11 (19): 17796- 17803
doi: 10.1021/acsami.9b03718
|
31 |
PYO S, CHOI J, KIM J Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric[J]. Advanced Electronic Materials, 2017, 4 (1): 1700427
|
32 |
CHEN S, ZHUO B, GUO X, et al Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range[J]. ACS Applied Materials and Interfaces, 2016, 8 (31): 20364- 20370
doi: 10.1021/acsami.6b05177
|
33 |
GUO Y, GAO S, YUE W, et al Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method[J]. ACS Applied Materials and Interfaces, 2019, 11 (51): 48594- 48603
doi: 10.1021/acsami.9b17966
|
34 |
CHHETRY A, YOON H, PARK J Y A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017, 5 (38): 10068- 10076
doi: 10.1039/C7TC02926H
|
35 |
ELAYES A, SHARMA V, YIANNACOU K, et al Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer[J]. Advanced Sustainable Systems, 2020, 4 (9): 2000056
doi: 10.1002/adsu.202000056
|
36 |
SUN Y, TAI H, YUAN Z, et al A facile strategy for low young's modulus PDMS microbeads enhanced flexible capacitive pressure sensors[J]. Particle and Particle Systems Characterization, 2021, 38 (7): 2100019
doi: 10.1002/ppsc.202100019
|
37 |
KIM J, CHOU E, LE J, et al Soft wearable pressure sensors for beat-to-beat blood pressure monitoring[J]. Advanced Healthcare Materials, 2019, 8 (13): 1900109
doi: 10.1002/adhm.201900109
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|