Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1079-1087, 1126    DOI: 10.3785/j.issn.1008-973X.2022.06.004
智能机器人     
分级倾斜微圆柱结构的高灵敏度柔性触觉传感器
郭小辉1,2(),洪炜强1,郑国庆3,王景溢3,唐国鹏1,杨金阳1,卓超强1,许耀华1,赵雨农4,张红伟1,*()
1. 安徽大学 电子信息工程学院,安徽 合肥 230601
2. 目标探测与特征提取安徽省重点实验室,安徽 六安 237010
3. 华东光电集成器件研究所,江苏 苏州 215163
4. 华中科技大学 光学与电子信息学院,湖北 武汉 430074
High sensitivity flexible tactile sensor with hierarchical tilted micro-pillar structure
Xiao-hui GUO1,2(),Wei-qiang HONG1,Guo-qing ZHENG3,Jing-yi WANG3,Guo-peng TANG1,Jin-yang YANG1,Chao-qiang ZHUO1,Yao-hua XU1,Yu-nong ZHAO4,Hong-wei ZHANG1,*()
1. School of Electronic Information Engineering, Anhui University, Hefei 230601, China
2. Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Lu’an 237010, China
3. East China Institute of Optoelectronic Integrated Devices, Suzhou 215163, China
4. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(3894 KB)   HTML
摘要:

为了满足电容式柔性触觉传感器在可穿戴电子设备、智能机器人、人机交互等领域的精准触觉感知应用需求,基于分级倾斜微圆柱结构提出柔性触觉传感器.传感器在受到外界压强作用时,引起倾斜微圆柱分级变形,导致传感器电容增大.结合仿真和实验研究传感器结构特征对其灵敏度的影响规律,揭示不同结构参数设计的传感器信号输出与加载压强间的关系,优化触觉传感器结构.实验数据表明,所提传感器具有良好的灵敏度(0.44 kPa?1)和低检测下限(2.6 Pa),响应时间为40 ms,最大迟滞误差为6.7%,在2 400次循环加/卸载过程中展现了优异的重复性和稳定性.该传感器可以拓展为不同尺寸和形状的“皮肤”阵列,实现了机械手精准感知和人体运动姿态监测.

关键词: 电子皮肤柔性触觉传感器高灵敏度快速响应分级倾斜微圆柱    
Abstract:

A flexible tactile sensor was proposed based on the hierarchical titled micro-pillar structure, in order to meet the precise tactile sensing application requirements of capacitive flexible tactile sensors in wearable electronic devices, intelligent robots and other fields. When the sensor was subjected to external pressure, the titled micro-pillar was deformed in stages, resulting in an increase in the capacitance of the sensor. Combined with simulation and experiment, the influence of sensor structure characteristics on its sensitivity were studied, the relationship between sensor signal output and loading pressure designed with different structural parameters was revealed, and the structure of tactile sensor was optimized. The experimental data showed that the sensor had good sensitivity (0.44 kPa?1) and low detection limit (2.6 Pa), the response time was 40 ms, the maximum hysteresis error was 6.7% The sensor exhibits excellent stability and repeatability during 2 400 cycles of loading/unloading, and it can be extended to "skin" arrays of different sizes and shapes, the precise perception of the manipulator and the monitoring of motion postures of the human body were realized.

Key words: electronic skin    flexible tactile sensor    high sensitivity    rapid response    hierarchical tilted micro-pillar
收稿日期: 2022-03-02 出版日期: 2022-06-30
CLC:  TP 212  
基金资助: 国家自然科学基金青年基金项目(61901005);安徽省自然科学基金青年基金项目(1908085QF261);中国博士后科学基金资助项目(2021M690994);安徽省博士后研究人员科研活动经费资助项目(2021B539);2021年度安徽省中央引导地方科技发展资金专项项目(202107d08050012)
通讯作者: 张红伟     E-mail: guoxh@ahu.edu.cn;hwzhang@ahu.edu.cn
作者简介: 郭小辉(1988—),男,副教授,硕导,从事柔性电子器件、MEMS传感器、混合集成电路抗高过载技术等研究. orcid.org/0000-0002-0202-866X. E-mail: guoxh@ahu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郭小辉
洪炜强
郑国庆
王景溢
唐国鹏
杨金阳
卓超强
许耀华
赵雨农
张红伟

引用本文:

郭小辉,洪炜强,郑国庆,王景溢,唐国鹏,杨金阳,卓超强,许耀华,赵雨农,张红伟. 分级倾斜微圆柱结构的高灵敏度柔性触觉传感器[J]. 浙江大学学报(工学版), 2022, 56(6): 1079-1087, 1126.

Xiao-hui GUO,Wei-qiang HONG,Guo-qing ZHENG,Jing-yi WANG,Guo-peng TANG,Jin-yang YANG,Chao-qiang ZHUO,Yao-hua XU,Yu-nong ZHAO,Hong-wei ZHANG. High sensitivity flexible tactile sensor with hierarchical tilted micro-pillar structure. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1079-1087, 1126.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.004        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1079

图 1  5×5分级倾斜微圆柱单元传感器结构和组成示意图
图 2  不同压强下不同微圆柱结构的应力分布模拟
图 3  传感器阵列制备流程示意图
图 4  电容式触觉传感器的结构特征参数优化
图 5  传感器的特性测试
图 6  传感器在5 kPa压强加/卸载过程中的稳定性测试
图 7  电容式柔性触觉传感器性能对比
图 8  机械手抓取不同硬度物体时的响应信号曲线
图 9  8×8传感器阵列的压力分布感知实验
图 10  机械手集成传感器触摸实验
图 11  本研究传感器在人体不同运动姿态监测中的应用
1 WANG Y, CHEN Z, MEI D, et al Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection[J]. Composites Science and Technology, 2022, 217: 109078
doi: 10.1016/j.compscitech.2021.109078
2 ZHOU Q, JI B, WEI Y Z, et al A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range[J]. Journal of Materials Chemistry A, 2019, 7 (48): 27334- 27346
doi: 10.1039/C9TA10489E
3 JI B, ZHOU Q, Wu J, et al Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array[J]. ACS Applied Materials and Interfaces, 2020, 12 (27): 31021- 31035
doi: 10.1021/acsami.0c08910
4 CAI L, CHEN G, TIAN J, et al Three-dimensional printed ultrahighly sensitive bioinspired ionic skin based on submicrometer-scale structures by polymerization shrinkage[J]. Chemistry of Materials, 2021, 33 (6): 2072- 2079
doi: 10.1021/acs.chemmater.0c04581
5 ZHAO X F, HANG C Z, LU H L, et al A skin-like sensor for intelligent braille recognition[J]. Nano Energy, 2019, 68: 104346
6 XIA T, YU R, YUAN J, et al Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins[J]. Advanced Materials Technologies, 2021, 6 (3): 2000984
doi: 10.1002/admt.202000984
7 QIU Y, TIAN Y, SUN S, et al Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions[J]. Nano Energy, 2020, 78: 105337
doi: 10.1016/j.nanoen.2020.105337
8 ZHAO X F, WEN X H, SUN P, et al. Spider web-like flexible tactile sensor for pressure-strain simultaneous detection [J]. ACS Applied Materials and Interfaces, 13(8): 10428-10436.
9 LU Y, HE Y, QIAO J, et al Highly sensitive interlocked piezoresistive sensors based on ultrathin ordered nanocone array films and their sensitivity simulation[J]. ACS Applied Materials and Interfaces, 2020, 12 (49): 55169- 55180
doi: 10.1021/acsami.0c16456
10 JEONG Y, GU J, BYUN J, et al Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring[J]. Advanced Healthcare Materials, 2021, 10 (9): 2001461
doi: 10.1002/adhm.202001461
11 AMOLI V, KIM J S, JEE E, et al A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin[J]. Nature Communications, 2019, 10 (1): 4019
doi: 10.1038/s41467-019-11973-5
12 QU C, WANG S, LIU L, et al Bioinspired flexible volatile organic compounds sensor based on dynamic surface wrinkling with dual-signal response[J]. Small, 2019, 15 (17): 1900216
doi: 10.1002/smll.201900216
13 ZHAO S F, RAN W H, WANG D P, et, al 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12 (28): 32023- 32030
doi: 10.1021/acsami.0c09893
14 XIONG Y, SHEN Y, TIAN L, et al A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70: 104436
doi: 10.1016/j.nanoen.2019.104436
15 TANG Z, JIA S, ZHOU C, et al 3D printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect[J]. ACS Applied Materials and Interfaces, 2020, 12 (25): 28669- 28680
doi: 10.1021/acsami.0c06977
16 WANG C, XIA K, ZHANG M, et al An all silk-derived dual-mode E-skin for simultaneous temperature-pressure detection[J]. ACS Applied Materials and Interfaces, 2017, 45: 39484- 39492
17 LI X, JI D, YU B, et al Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal, 2021, 12 (426): 130345
18 LI L, FU X, CHEN S, et al Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12 (13): 15362- 15369
doi: 10.1021/acsami.0c00255
19 LIU Y, BAO R, TAO J, et al Recent progress in tactile sensors and their applications in intelligent systems[J]. Science Bulletin, 2020, 65 (1): 70- 88
doi: 10.1016/j.scib.2019.10.021
20 RUTH S R A, FEIG V R, TRAN H, et al Microengineering pressure sensor active layers for improved performance[J]. Advanced Functional Materials, 2020, 30 (39): 2003491
doi: 10.1002/adfm.202003491
21 HWANG J, KIM Y, YANG H, et al Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B: Engineering, 2021, 211: 108607
doi: 10.1016/j.compositesb.2021.108607
22 HE F, YOU X, WANG W, et al Recent progress in flexible microstructural pressure sensors toward human-machine interaction and healthcare applications[J]. Small Methods, 2021, 5 (3): 2001041
doi: 10.1002/smtd.202001041
23 LI S, R LI, CHEN T, et al Highly sensitive and flexible capacitive pressure sensor enhanced by weaving of pyramidal concavities staggered in honeycomb matrix[J]. IEEE Sensors Journal, 2020, 20 (23): 14436- 14443
doi: 10.1109/JSEN.2020.3008474
24 RUTH S R A, BEKER L, TRAN H, et al Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals[J]. Advanced Functional Materials, 2019, 30 (29): 1903100
25 WAN Y, QIU Z, HONG Y, et al A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4 (4): 1700586
doi: 10.1002/aelm.201700586
26 NIU H, GAO S, YUE W, et al Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure[J]. Small, 2020, 16 (4): 1904774
doi: 10.1002/smll.201904774
27 KIM Y, YANG H, OH J H Simple fabrication of highly sensitive capacitive pressure sensors using a porous dielectric layer with cone-shaped patterns[J]. Materials and Design, 2020, 197: 109203
28 ATALAY O, ATALAY A, GAFFORD J, et al A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer[J]. Advanced Materials Technologies, 2018, 3 (1): 1700237
doi: 10.1002/admt.201700237
29 KIM H, KIM G, KIM T, et al Transparent, flexible, conformal capacitive pressure sensors with nanoparticles[J]. Small, 2018, 14 (8): 1703432
doi: 10.1002/smll.201703432
30 LUO Y, SHAO J, CHEN S, et al Flexible capacitive pressure sensor enhanced by tilted micropillar arrays[J]. ACS Applied Materials and Interfaces, 2019, 11 (19): 17796- 17803
doi: 10.1021/acsami.9b03718
31 PYO S, CHOI J, KIM J Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric[J]. Advanced Electronic Materials, 2017, 4 (1): 1700427
32 CHEN S, ZHUO B, GUO X, et al Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range[J]. ACS Applied Materials and Interfaces, 2016, 8 (31): 20364- 20370
doi: 10.1021/acsami.6b05177
33 GUO Y, GAO S, YUE W, et al Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method[J]. ACS Applied Materials and Interfaces, 2019, 11 (51): 48594- 48603
doi: 10.1021/acsami.9b17966
34 CHHETRY A, YOON H, PARK J Y A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017, 5 (38): 10068- 10076
doi: 10.1039/C7TC02926H
35 ELAYES A, SHARMA V, YIANNACOU K, et al Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer[J]. Advanced Sustainable Systems, 2020, 4 (9): 2000056
doi: 10.1002/adsu.202000056
36 SUN Y, TAI H, YUAN Z, et al A facile strategy for low young's modulus PDMS microbeads enhanced flexible capacitive pressure sensors[J]. Particle and Particle Systems Characterization, 2021, 38 (7): 2100019
doi: 10.1002/ppsc.202100019
37 KIM J, CHOU E, LE J, et al Soft wearable pressure sensors for beat-to-beat blood pressure monitoring[J]. Advanced Healthcare Materials, 2019, 8 (13): 1900109
doi: 10.1002/adhm.201900109
[1] 尹喜珍, 马成炎, 叶甜春, 肖时茂, 于云丰. 高灵敏度GNSS接收机频率合成器设计[J]. J4, 2013, 47(1): 70-76.
[2] 马军 祁国宁 顾新建 纪杨建 郭建锋. 面向快速响应设计的零件资源可重用建模与匹配[J]. J4, 2008, 42(8): 1428-1433.