Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 635-640    DOI: 10.3785/j.issn.1008-973X.2018.04.004
机械工程     
磁悬浮旋转机械振动稳定性实例研究
崔恒斌1, 周瑾1, 董继勇2, 金超武1
1. 南京航空航天大学 机电学院, 江苏 南京 210016;
2. 南京磁谷科技有限公司, 江苏 南京 211102
Case study on vibration stability of rotating machinery equipped with active magnetic bearings
CUI Heng-bin1, ZHOU Jin1, DONG Ji-yong2, JIN Chao-wu1
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Nanjing CIGU Limited Corporation, Nanjing 211102, China
 全文: PDF(2540 KB)   HTML
摘要:

为了准确评价磁悬浮旋转机械振动的稳定性,有效控制磁悬浮转子振动、提高系统稳定性,提出应用ISO14839标准对磁悬浮旋转机械的振动稳定性进行评价和分析.对ISO14839标准中的振动位移和稳定裕度内容进行介绍,以一磁悬浮轴承转子实验台为例,应用ISO14839标准评价实验台振动位移和稳定裕度等级,分析系统的振动问题和不稳定因素,提出相应的解决方案.实例结果分析得到,实验台振动位移水平为A等级,稳定裕度水平为B等级,验证了ISO14839标准的合理性.

Abstract:

A vibration stability evaluation method based on ISO14839 standard was proposed for rotating machinery with active magnetic bearings. The method can be used for vibration control and stability improvement. The vibration displacement and stability margin concept in ISO14839 standard were introduced. Then a magnetic bearing rotor experimental platform was used as an example to evaluate zone of vibration displacement and stability margin respectively. The vibration and unstable factors of system were analyzed, and the corresponding solutions were proposed. The evaluation results show that the vibration displacement level of the experimental platform is A, and the stability margin is B. Then the feasibility of ISO14839 standard was verified.

收稿日期: 2017-03-09
CLC:  TH39  
基金资助:

国家自然科学基金资助项目(51675261);南京航空航天大学研究生创新基地开放基金资助项目(kfjj20160509)(中央高校基本科研业务费专项资金);江苏省精密与微细制造技术重点实验室开放基金资助项目.

通讯作者: 周瑾,女,教授.orcid.org/0000-0001-6966-4671.     E-mail: zhj@nuaa.edu.cn
作者简介: 崔恒斌(1993-),男,硕士生,从事磁悬浮技术研究.orcid.org/0000-0002-1562-6634.E-mail:cuihengbin1993@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.

CUI Heng-bin, ZHOU Jin, DONG Ji-yong, JIN Chao-wu. Case study on vibration stability of rotating machinery equipped with active magnetic bearings. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 635-640.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.004        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/635

[1] 齐鹏逸.基于电磁悬浮轴承的转子-轴承-密封系统的稳定性识别及振动控制[D].北京:北京化工大学,2011. QI Peng-yi.Rotor-bearing-seal system stability identification and Vibration control base on AMB[D].Beijing:Beijing University of Chemical Technology, 2011.
[2] 谢振宇, 徐龙祥, 李迎, 等.磁悬浮轴承转子系统的稳定性及动态特性分析[J].机械科学与技术, 2004, 23(7):765-767. XIE Zhen-yu, XU Long-xiang, LI Ying, et al. Analysis of the stability and dynamic characteristic of an active magnetic bearing system[J]. Mechanical Science and Technology for Aerospace Engineering, 2004, 23(7):765-767.
[3] Active magnetic bearing-evaluation of stability margin:ISO TC108 SC2 WG7, N267[S]. London:Working Group Draft of International Standard, 2003.
[4] Mechanical vibration-vibration of rotating machinery equipped with active magnetic bearings-Part 2:evaluation of vibration:ISO14839-2[S]. London:British Standard Institution, 2004.
[5] Mechanical vibration-vibration of rotating machinery equipped with active magnetic bearings-Part 3:evaluation of stability margin:ISO14839-3[S]. London:British Standard Institution, 2006.
[6] YOON S Y. Surge control of active magnetic bearing suspended centrifugal compressors[D]. Charlottesville:University of Virginia, 2011.
[7] LI G. Robust stabilization of rotor-active magnetic bearing systems[D]. Charlottesville:University of Virginia, 2007.
[8] 张钢, 殷庆振, 蒋德得,等. 磁悬浮轴承-柔性转子系统的结构设计[J]. 轴承, 2010(6):15-18. ZHANG Gang, YIN Qing-zhen, JIANG De-de, et al. Design of flexible rotor system supported by AMB[J]. Bearing, 2010(6):15-18.
[9] SWANSON E, MASLEN E H, LI G, et al. Rotor dynamic design audit of amb supported machinery[C]//Proceedings of the 37th Turbo Machinery Symposium. Charlottesville:Texas A&M University, 2008:133-158.
[10] 吴桐. 主动磁悬浮轴承及其控制方法研究[D]. 沈阳:沈阳工业大学, 2016. WU Tong. Research on active magnetic bearing and its control method[D]. Shenyang:Shenyang University of Technology, 2016.
[11] XU X, CHEN S, ZHANG Y. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation[J]. Journal of Sound and Vibration, 2016, 374(4):29-42.
[12] 蒋森. 切比雪夫滤波器在磁悬浮控制系统中的应用[J]. 微电机, 2017, 50(3):64-68. JIANG Sen. Application of Chebyshev filter for magnetic levitation control system[J]. Small and Special Electrical Machines, 2017, 50(3):64-68.
[13] 龙亚文, 谢振宇, 徐欣, 等. 基于变偏置电流控制方式的磁悬浮轴承系统控制策略[J]. 航空动力学报, 2014, 29(1):118-124. LONG Ya-wen, XIE Zhen-yu, XU Xin, et al. Control strategy of active magnetic bearing system based on variable bias current control[J]. Journal of Aerospace Power, 2014, 29(1):118-124.
[14] 韩辅君, 房建成. 磁悬浮飞轮转子系统的现场动平衡方法[J]. 航空学报, 2010, 31(1):184-190. HAN Fu-jun, FANG Jian-cheng. Field balancing method for rotor system of a magnetic suspending flywheel[J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(1):184-190.
[15] 汤恩琼, 房建成, 郑世强. 磁悬浮电动机柔性转子振动控制与试验研究[J]. 机械工程学报, 2015, 51(1):106-116. TANG En-qiong, FANG Jian-cheng, ZHENG Shi-qiang. Vibration control and experimental study of flexible rotor in magnetically suspended motor[J]. Journal of Mechanical Engineering, 2015, 51(1):106-116.
[16] SINA K I. Robust control and unbalance compensation of rotor/active magnetic bearing systems[J]. Journal of Vibration and Control, 2012, 18(6):817-832.

No related articles found!