计算机技术 |
|
|
|
|
基于联邦学习和时空特征融合的网络入侵检测方法 |
王立红1( ),刘新倩1,2,*( ),李静1,冯志全2,3 |
1. 山东理工大学 计算机科学与技术学院,山东 淄博 255000 2. 山东省网络环境智能计算技术重点实验室,山东 济南 250000 3. 济南大学 人工智能研究院,山东 济南 250000 |
|
Network intrusion detection method based on federated learning and spatiotemporal feature fusion |
Lihong WANG1( ),Xinqian LIU1,2,*( ),Jing LI1,Zhiquan FENG2,3 |
1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China 2. Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan 250000, China 3. Artificial Intelligence Institute, University of Jinan, Jinan 250000, China |
引用本文:
王立红,刘新倩,李静,冯志全. 基于联邦学习和时空特征融合的网络入侵检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1201-1210.
Lihong WANG,Xinqian LIU,Jing LI,Zhiquan FENG. Network intrusion detection method based on federated learning and spatiotemporal feature fusion. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1201-1210.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1201
|
1 |
AMARAL A A, DE SOUZA MENDES L, ZARPELÃO B B, et al Deep IP flow inspection to detect beyond network anomalies[J]. Computer Communications, 2017, 98: 80- 96
doi: 10.1016/j.comcom.2016.12.007
|
2 |
HINDY H, ATKINSON R, TACHTATZIS C, et al Utilising deep learning techniques for effective zero-day attack detection[J]. Electronics, 2020, 9 (10): 1684
doi: 10.3390/electronics9101684
|
3 |
SAID R B, ASKERZADE I. Attention-based CNN-BiLSTM deep learning approach for network intrusion detection system in software defined networks [C]// 5th International Conference on Problems of Cybernetics and Informatics. Baku: IEEE, 2023: 1–5.
|
4 |
KHAN M A HCRNNIDS: hybrid convolutional recurrent neural network-based network intrusion detection system[J]. Processes, 2021, 9 (5): 834
doi: 10.3390/pr9050834
|
5 |
WISANWANICHTHAN T, THAMMAWICHAI M A double-layered hybrid approach for network intrusion detection system using combined naive Bayes and SVM[J]. IEEE Access, 2021, 9: 138432- 138450
doi: 10.1109/ACCESS.2021.3118573
|
6 |
SAADAT H, ABOUMADI A, MOHAMED A, et al. Hierarchical federated learning for collaborative IDS in IoT applications [C]// 10th Mediterranean Conference on Embedded Computing. Budva: IEEE, 2021: 1–6.
|
7 |
ZHAO R, WANG Y, XUE Z, et al Semisupervised federated-learning-based intrusion detection method for Internet of Things[J]. IEEE Internet of Things Journal, 2023, 10 (10): 8645- 8657
doi: 10.1109/JIOT.2022.3175918
|
8 |
OKEY O D, MELGAREJO D C, SAADI M, et al Transfer learning approach to IDS on cloud IoT devices using optimized CNN[J]. IEEE Access, 2023, 11: 1023- 1038
doi: 10.1109/ACCESS.2022.3233775
|
9 |
SONG J, WANG X, HE M, et al CSK-CNN: network intrusion detection model based on two-layer convolution neural network for handling imbalanced dataset[J]. Information, 2023, 14 (2): 130
doi: 10.3390/info14020130
|
10 |
AZIZJON M, JUMABEK A, KIM W. 1D CNN based network intrusion detection with normalization on imbalanced data [C]// International Conference on Artificial Intelligence in Information and Communication. Fukuoka: IEEE, 2020: 218–224.
|
11 |
缪祥华, 单小撤 基于密集连接卷积神经网络的入侵检测技术研究[J]. 电子与信息学报, 2020, 42 (11): 2706- 2712 MIAO Xianghua, SHAN Xiaoche Research on intrusion detection technology based on densely connected convolutional neural networks[J]. Journal of Electronics and Information Technology, 2020, 42 (11): 2706- 2712
doi: 10.11999/JEIT190655
|
12 |
ALKADI O, MOUSTAFA N, TURNBULL B, et al A deep blockchain framework-enabled collaborative intrusion detection for protecting IoT and cloud networks[J]. IEEE Internet of Things Journal, 2021, 8 (12): 9463- 9472
doi: 10.1109/JIOT.2020.2996590
|
13 |
SIVAMOHAN S, SRIDHAR S S, KRISHNAVENI S. An effective recurrent neural network (RNN) based intrusion detection via bi-directional long short-term memory [C]// International Conference on Intelligent Technologies. Hubli: IEEE, 2021: 1–5.
|
14 |
TANG T A, MHAMDI L, MCLERNON D, et al. Deep recurrent neural network for intrusion detection in SDN-based networks [C]// 4th IEEE Conference on Network Softwarization and Workshops. Montreal: IEEE, 2018: 202–206.
|
15 |
THILAGAM T, ARUNA R Intrusion detection for network based cloud computing by custom RC-NN and optimization[J]. ICT Express, 2021, 7 (4): 512- 520
doi: 10.1016/j.icte.2021.04.006
|
16 |
WANG W, SHENG Y, WANG J, et al HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access, 2017, 6: 1792- 1806
|
17 |
HALBOUNI A, GUNAWAN T S, HABAEBI M H, et al CNN-LSTM: hybrid deep neural network for network intrusion detection system[J]. IEEE Access, 2022, 10: 99837- 99849
doi: 10.1109/ACCESS.2022.3206425
|
18 |
MYNHOFF P A, MOCANU E, GIBESCU M. Statistical learning versus deep learning: performance comparison for building energy prediction methods [C]// IEEE/PES Innovative Smart Grid Technologies Conference Europe. Piscataway: IEEE, 2018: 1–6.
|
19 |
SHISRUT R, AISHWARYA S, VINAYAKUMAR R, et al Intrusion detection systems using classical machine learning techniques vs integrated unsupervised feature learning and deep neural network[J]. Internet Technology Letters, 2020, 5 (1): e232
|
20 |
MOTHUKURI V, KHARE P, PARIZI R M, et al Federated-learning-based anomaly detection for IoT security attacks[J]. IEEE Internet of Things Journal, 2022, 9 (4): 2545- 2554
doi: 10.1109/JIOT.2021.3077803
|
21 |
ZHAO Y, CHEN J, WU D, et al. Multi-task network anomaly detection using federated learning [C]// 10th International Symposium on Information and Communication Technology. NewYork: ACM, 2019: 273–279.
|
22 |
FRIHA O, FERRAG M A, SHU L, et al FELIDS: federated learning-based intrusion detection system for agricultural Internet of Things[J]. Journal of Parallel and Distributed Computing, 2022, 165: 17- 31
doi: 10.1016/j.jpdc.2022.03.003
|
23 |
ANASTASAKIS Z, PSYCHOGYIOS K, VELIVASSAKI T, et al. Enhancing cyber security in IoT systems using FL-based IDS with differential privacy [C]// Global Information Infrastructure and Networking Symposium. Argostoli: IEEE, 2022: 30–34.
|
24 |
ALI AL-ATHBA AL-MARRI N, CIFTLER B S, ABDALLAH M M. Federated mimic learning for privacy preserving intrusion detection [C]// IEEE International Black Sea Conference on Communications and Networking. Odessa: IEEE, 2020: 1–6.
|
25 |
SHARAFALDIN I, LASHKARI A H, GHORBANI A Toward generating a new intrusion detection dataset and intrusion traffic characterization[J]. ICISSp, 2018, 1: 108- 116
|
26 |
CHAE H, JO B, CHOI S H, et al Feature selection for intrusion detection using NSL-KDD[J]. Recent Advances in Computer Science, 2013, 20132: 184- 187
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|