Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 205-212    DOI: 10.3785/j.issn.1008-973X.2025.01.020
土木工程、交通工程     
城市快速路互通交织区车辆的换道持续距离选择
赵顗1(),安醇2,李铭浩1,马健霄1,怀硕1
1. 南京林业大学 汽车与交通工程学院,江苏 南京 210037
2. 兰州交通大学 交通运输学院,甘肃 兰州 730070
Selection of lane-changing distance for vehicles in urban expressway interchange weaving section
Yi ZHAO1(),Chun AN2,Minghao LI1,Jianxiao MA1,Shuo HUAI1
1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
2. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
 全文: PDF(1943 KB)   HTML
摘要:

以城市快速路互通交织区换道行为为对象,研究换道过程中换道持续距离的选择行为. 以实测车行轨迹数据为基础,利用因果推断理论识别影响换道持续距离选择的主要因素:目标车辆换道前后的速度和换道持续时间、当前车道和目标车道前后车的间距. 分别利用支持向量机模型和深度学习模型进行换道持续距离选择行为建模,检验换道持续距离选择行为影响因素分析的有效性. 结果表明,经筛选后的影响因素提高了行为选择模型的预测速度以及深度学习模型的预测精度;支持向量模型虽然预测速度更快,但预测精度不如深度学习模型. 对典型换道行为进行特征分析,为城市快速路互通交织区管理方案的制定奠定了理论基础,是对换道过程行为特征研究的有效补充,精确刻画了换道行为过程.

关键词: 城市快速路互通交织区换道持续距离因果推断支持向量机深度学习    
Abstract:

The selection behavior of the lane-changing distance in the lane-changing process was examined by taking the lane-changing behavior in the urban expressway interchange weaving section as an object. Utilizing measured vehicle trajectory data, causal inference theory was applied to identify key factors influencing the choice of lane-changing distance. The factors included the velocity and lane-changing duration of the target vehicle before and after lane-changing, as well as the distance between the current lane and the vehicles in front and behind the target lane. The support vector model and the deep learning model were employed respectively to establish models for lane-changing distance selection behavior to test the validity of the influencing factor analysis. Results show that the screened factors contribute to enhancing the prediction speed of the behavioral choice model and improving the prediction accuracy of the deep learning model. While the support vector model offers faster predictions, it falls behind in prediction accuracy compared to the deep learning model. Conducting characteristic analysis on typical lane-changing behaviors provided a foundational basis for formulating management strategies in the urban expressway interchange weaving section, effectively supplementing existing research on lane-changing behavioral characteristics and offering a nuanced portrayal of the lane-changing process.

Key words: urban expressway interchange weaving section    lane-changing distance    causal inference    support vector machine    deep learning
收稿日期: 2023-11-10 出版日期: 2025-01-18
CLC:  U 491.1+4  
基金资助: 国家自然科学基金资助项目(62303228);教育部人文社会科学研究项目(23YJC630253).
作者简介: 赵顗(1989—),男,副教授,博士,从事交通规划与管理、智能交通研究. orcid.org/0000-0002-0074-8188. E-mail:zhaoyi207@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵顗
安醇
李铭浩
马健霄
怀硕

引用本文:

赵顗,安醇,李铭浩,马健霄,怀硕. 城市快速路互通交织区车辆的换道持续距离选择[J]. 浙江大学学报(工学版), 2025, 59(1): 205-212.

Yi ZHAO,Chun AN,Minghao LI,Jianxiao MA,Shuo HUAI. Selection of lane-changing distance for vehicles in urban expressway interchange weaving section. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 205-212.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.020        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/205

图 1  城市快速路互通交织区物理结构图
图 2  目标车道前、后车辆距离的统计分布
图 3  换道持续距离分布图
符号影响因素符号影响因素
ID车辆编号ar当前车道上后车加速度
v车辆速度aft目标车道上前车的加速度
a车辆加速度art目标车道上后车的加速度
v1车辆变道后速度xf当前车道上与前车的距离
a1车辆变道后加速度xr当前车道上与后车的距离
vf当前车道上前车速度xft目标车道上与前车的距离
vr当前车道上后车速度xrt目标车道上与后车的距离
vft目标车道上前车的速度xfr目标车道上前后车间的距离
vrt目标车道上后车的速度t车辆的换道持续时间
af当前车道上的前车加速度xd车辆的换道持续距离
表 1  换道持续距离选择行为的影响因素
图 4  影响因素的因果图
图 5  因果效应计算与反驳箱形图
图 6  不同决策模型的预测结果对比
图 7  不同影响因素实验组的预测模型评价指标对比
图 8  相同影响因素实验组2种预测模型的评价指标对比
1 GAO K, LI X, HU L, et al Instantaneous lane-changing type aware lane change prediction based on LSTM in mixed traffic scenario[J]. Journal of Circuits, Systems and Computers, 2022, 31 (10): 2250180
doi: 10.1142/S0218126622501808
2 OUYANG P, WU J, XU C, et al Traffic safety analysis of inter-tunnel weaving section with conflict prediction models[J]. Journal of Transportation Safety and Security, 2020, 14 (4): 1- 25
3 吴中, 梁明琰, 杨海飞 基于换道时间分布的交通流随机微分方程[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1629- 1635
WU Zhong, LIANG Mingtan, YANG Haifei Stochastic differential equation of traffic flow model based on distribution of lane-changing duration[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1629- 1635
4 SUN J, ZUO K, JIANG S, et al Modeling and predicting stochastic merging behaviors at freeway on-ramp bottlenecks[J]. Journal of Advanced Transportation, 2018, 2018 (1): 1- 15
5 XING L, HE J, LI Y, et al Comparison of different models for evaluating vehicle collision risks at upstream diverging area of toll plaza[J]. Accident Analysis and Prevention, 2020, 135: 105343
doi: 10.1016/j.aap.2019.105343
6 ZHAO Y, WANG Z, WU Y, et al Trajectory-based characteristic analysis and decision modeling of the lane-changing process in intertunnel weaving sections[J]. PloS One, 2022, 17 (4): e0266489
doi: 10.1371/journal.pone.0266489
7 PARK H, OH C, MOON J, et al Development of a lane change risk index using vehicle trajectory data[J]. Accident Analysis and Prevention, 2018, 110: 1- 8
doi: 10.1016/j.aap.2017.10.015
8 SHANGGUAN Q Q, FU T, WANG J, et al A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns[J]. Accident Analysis and Prevention, 2022, 164: 106500
doi: 10.1016/j.aap.2021.106500
9 王少杰, 曲大义, 刘浩敏, 等 面向数据驱动的车辆跟驰行为建模[J]. 公路交通科技, 2023, 40 (11): 222- 228
WANG Shaojie, QU Dayi, LIU Haomin, et al Modeling of car-following behavior based on data-driven method[J]. Journal of Highway and Transportation Research and Development, 2023, 40 (11): 222- 228
doi: 10.3969/j.issn.1002-0268.2023.11.026
10 ZHANG X, SUN J, QI X, et al Simultaneous modeling of car-following and lane-changing behaviors using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 287- 304
doi: 10.1016/j.trc.2019.05.021
11 曲昭伟, 潘昭天, 陈永恒, 等 基于最优速度模型的改进安全距离跟驰模型[J]. 吉林大学学报: 工学版, 2019, 49 (4): 1092- 1099
QU Zhaowei, PAN Zhaotian, CHEN Yongheng, et al Car-following model with improving safety distance based on optimal velocity model[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49 (4): 1092- 1099
12 李根, 翟伟, 邬岚 基于梯度提升决策树的汇合交互作用研究[J]. 浙江大学学报: 工学版, 2022, 56 (4): 649- 655
LI Gen, ZHAI Wei, WU Lan Study of merging interactions based on gradient boosting decision tree[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 649- 655
13 郭俊超, 邵金菊, 袁俊凯, 等 基于虚拟车道线的智能车辆换道轨迹规划方法[J]. 汽车技术, 2023, (11): 19- 26
GUO Junchao, SHAO Jinju, YUAN Junkai, et al Lane change trajectory planning method of intelligent vehicle based on virtual lane[J]. Automobile Technology, 2023, (11): 19- 26
14 PENG Y, LIU S, YU D Z An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view[J]. Physica A: Statistical Mechanics and its Applications, 2020, 538: 122967
doi: 10.1016/j.physa.2019.122967
15 ZHOU X, KUANG D, ZHAO W, et al Lane-changing decision method based Nash Q-learning with considering the interaction of surrounding vehicles[J]. IET Intelligent Transport Systems, 2020, 14 (14): 2064- 2072
doi: 10.1049/iet-its.2020.0427
16 ALI Y, HAQUE M M, ZHENG Z An extreme value theory approach to estimate crash risk during mandatory lane-changing in a connected environment[J]. Analytic Methods in Accident Research, 2022, 33: 100193
doi: 10.1016/j.amar.2021.100193
17 ZHENG O. Developing a traffic safety diagnostics system for unmanned aerial vehicles using deep learning algorithms [D]. Orlando: University of Central Florida, 2019: 1–24.
18 马忠贵, 徐晓晗, 刘雪儿 因果推断三种分析框架及其应用综述[J]. 工程科学学报, 2022, 44 (7): 1231- 1243
MA Zhonggui, XU Xiaohan, LIU Xue’er Three analytical frameworks of causal inference and their applications[J]. Chinese Journal of Engineering, 2022, 44 (7): 1231- 1243
doi: 10.3321/j.issn.1001-053X.2022.7.bjkjdxxb202207013
19 刘礼, 吴飞, 李廉 因果关系学习的思维取向和概念分析[J]. 中国大学教学, 2021, (10): 35- 42
LIU Li, WU Fei, LI Lian Thinking orientation and conceptual analysis of causal relationship learning[J]. China University Teaching, 2021, (10): 35- 42
doi: 10.3969/j.issn.1005-0450.2021.10.007
20 ZHOU Z, ZHAO Y, LI M, et al A causal inference–based speed control framework for discretionary lane-changing processes[J]. Journal of Transportation Engineering, Part A: Systems, 2023, 149 (8): 1
21 梁礼明, 陈明理, 邓广宏, 等 分形理论下支持向量机核函数选择[J]. 科学技术与工程, 2019, 19 (13): 131- 138
LIANG Liming, CHEN Mingli, DENG Guanghong, et al Research on selection of kernel function of SVM under fractal theory[J]. Science Technology and Engineering, 2019, 19 (13): 131- 138
doi: 10.3969/j.issn.1671-1815.2019.13.021
22 葛泉波, 张建朝, 杨秦敏, 等 带有微分项改进的自适应梯度下降优化算法[J]. 控制理论与应用, 2022, 39 (4): 623- 632
GE Quanbo, ZHANG Jianchao, YANG Qinmin, et al Adaptive gradient descent optimization algorithm with improved differential terms[J]. Control Theory and Applications, 2022, 39 (4): 623- 632
doi: 10.7641/CTA.2021.10061
[1] 陈智超,杨杰,李凡,冯志成. 基于深度学习的列车运行环境感知关键算法研究综述[J]. 浙江大学学报(工学版), 2025, 59(1): 1-17.
[2] 刘登峰,陈世海,郭文静,柴志雷. 基于轻量残差网络的高效半色调算法[J]. 浙江大学学报(工学版), 2025, 59(1): 62-69.
[3] 李凡,杨杰,冯志成,陈智超,付云骁. 基于图像识别的弓网接触点检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1801-1810.
[4] 肖力,曹志刚,卢浩冉,黄志坚,蔡袁强. 基于深度学习和梯度优化的弹性超材料设计[J]. 浙江大学学报(工学版), 2024, 58(9): 1892-1901.
[5] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[6] 李林睿,王东升,范红杰. 基于法条知识的事理型类案检索方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1357-1365.
[7] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[8] 宋娟,贺龙喜,龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.
[9] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[10] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[11] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[12] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[13] 钱庆杰,余军合,战洪飞,王瑞,胡健. 基于DL-BiGRU多特征融合的注塑件尺寸预测方法[J]. 浙江大学学报(工学版), 2024, 58(3): 646-654.
[14] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[15] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.