土木与建筑工程 |
|
|
|
|
基于深度学习和梯度优化的弹性超材料设计 |
肖力1,2( ),曹志刚1,3,*( ),卢浩冉1,黄志坚1,蔡袁强1 |
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058 2. 浙江大学 平衡建筑研究中心,浙江 杭州 310028 3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028 |
|
Elastic metamaterial design based on deep learning and gradient optimization |
Li XIAO1,2( ),Zhigang CAO1,3,*( ),Haoran LU1,Zhijian HUANG1,Yuanqiang CAI1 |
1. Coastal and Urban Geotechnical Engineering Research Center, Zhejiang University, Hangzhou 310058, China 2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China 3. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China |
引用本文:
肖力,曹志刚,卢浩冉,黄志坚,蔡袁强. 基于深度学习和梯度优化的弹性超材料设计[J]. 浙江大学学报(工学版), 2024, 58(9): 1892-1901.
Li XIAO,Zhigang CAO,Haoran LU,Zhijian HUANG,Yuanqiang CAI. Elastic metamaterial design based on deep learning and gradient optimization. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1892-1901.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.014
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1892
|
1 |
KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71 (13): 2022- 2025
doi: 10.1103/PhysRevLett.71.2022
|
2 |
LIU Z, ZHANG X, MAO Y, et al Locally resonant sonic materials[J]. Science, 2000, 289 (5485): 1734- 1736
doi: 10.1126/science.289.5485.1734
|
3 |
唐豪, 陈晓斌, 唐孟雄, 等 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43 (12): 2169- 2179 TANG Hao, CHENG Xiaobing, TANG Mengxiong, et al Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (12): 2169- 2179
doi: 10.11779/CJGE202112003
|
4 |
CHENG Z, SHI Z, MO Y Complex dispersion relations and evanescent waves in periodic beams via the extended differential quadrature method[J]. Composite Structures, 2018, 187: 122- 136
doi: 10.1016/j.compstruct.2017.12.037
|
5 |
DEASI R, GUHA A, SESHU P Modelling and simulation of active and passive seat suspensions for vibration attenuation of vehicle occupants[J]. International Journal of Dynamics and Control, 2021, 9 (4): 1423- 1443
doi: 10.1007/s40435-021-00788-2
|
6 |
LI X, CHENG S, YANG H, et al Optimization of vibration characteristics and directional propagation of plane waves in branching ligament structures of wind models[J]. Results in Physics, 2023, 47: 106345
doi: 10.1016/j.rinp.2023.106345
|
7 |
LI X, CHENG S, YANG H, et al Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators[J]. Physica A, 2023, 615: 128600
doi: 10.1016/j.physa.2023.128600
|
8 |
XIAO L, CAO Z, LU H, et al Controllable and scalable gradient-driven optimization design for two-dimensional metamaterials based on deep learning[J]. Composite Structures, 2024, 337: 118072
doi: 10.1016/j.compstruct.2024.118072
|
9 |
葛倩倩, 于桂兰 有覆层土体中部分埋入式表面波屏障[J]. 工程力学, 2020, 37 (Suppl.1): 249- 253 GE Qianqian, YU Guilan A partially embedded periodic barriers for surface waves in soil with a covered layer[J]. Engineering Mechanics, 2020, 37 (Suppl.1): 249- 253
doi: 10.6052/j.issn.1000-4750.2019.04.S046
|
10 |
YI G, YOUN B A comprehensive survey on topology optimization of phononic crystals[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1315- 1344
doi: 10.1007/s00158-016-1520-4
|
11 |
熊远皓, 李凤明, 张传增 周期结构振动带隙特性优化研究进展[J]. 哈尔滨工程大学学报, 2022, 43 (9): 1229- 1240 XIONG Yuanhao, LI Fengming, ZHANG Chuanzeng Research progress on the optimization of vibration band-gap characteristics for periodic structures[J]. Journal of Harbin Engineering University, 2022, 43 (9): 1229- 1240
|
12 |
WANG X, WAN S, ZHOU P, et al Topology optimization of periodic pile barriers and its application in vibration reduction for plane waves[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107119
doi: 10.1016/j.soildyn.2021.107119
|
13 |
ZHOU P, WAN S, WANG X, et al Topology optimization of the periodic pile barrier with initial stresses arranged in rectangular and equilateral triangular lattices[J]. Structures, 2023, 51: 628- 639
doi: 10.1016/j.istruc.2023.03.013
|
14 |
LIU Z, ZHU D, RODRIGUES S P, et al Generative model for the inverse design of metasurfaces[J]. Nano Letters, 2018, 18 (10): 6570- 6576
doi: 10.1021/acs.nanolett.8b03171
|
15 |
贾宇翔, 王甲富, 陈维, 等 基于智能算法的超材料快速优化设计方法研究进展[J]. 雷达学报, 2021, 10 (2): 220- 239 JIA Yuxiang, WANG Jiafu, CHEN Wei, et al Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 2021, 10 (2): 220- 239
doi: 10.12000/JR21027
|
16 |
JIN Y, HE L, WEN Z, et al Intelligent on-demand design of phononic metamaterials[J]. Nanophotonics, 2022, 11 (3): 439- 460
doi: 10.1515/nanoph-2021-0639
|
17 |
LI X, NING S, LIU Z, et al Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112737
doi: 10.1016/j.cma.2019.112737
|
18 |
GURBUZ C, KRONOWETTER F, DIETZ C, et al Generative adversarial networks for the design of acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2021, 149 (2): 1162- 1174
doi: 10.1121/10.0003501
|
19 |
曹蕾蕾, 朱旺, 武建华, 等 基于人工神经网络的声子晶体逆向设计[J]. 力学学报, 2021, 53 (7): 1992- 1998 CAO Leilei, ZHU Wang, WU Jianhua, et al Inverse design of phononic crystals by artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (7): 1992- 1998
doi: 10.6052/0459-1879-21-142
|
20 |
LIU C, YU G Intelligent design of engineered metabarrier based on deep learning[J]. Composite Structures, 2022, 280: 114911
doi: 10.1016/j.compstruct.2021.114911
|
21 |
LIU C, YU G Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114925
doi: 10.1016/j.cma.2022.114925
|
22 |
LIU C, YU G Deep learning-based topology design of periodic barrier for full-mode waves[J]. Construction and Building Materials, 2022, 314: 125579
doi: 10.1016/j.conbuildmat.2021.125579
|
23 |
LIU D, TAN Y, KHORAM E, et al Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5 (4): 1365- 1369
doi: 10.1021/acsphotonics.7b01377
|
24 |
ABUEIDDA D W, ALMASRI M, AMMOURAH R, et al Prediction and optimization of mechanical properties of composites using convolutional neural networks[J]. Composite Structures, 2019, 227: 111264
doi: 10.1016/j.compstruct.2019.111264
|
25 |
CUI X, WANG S, HU S A method for optimal design of automotive body assembly using multi-material construction[J]. Materials and Design, 2008, 29 (2): 381- 387
doi: 10.1016/j.matdes.2007.01.024
|
26 |
XIAO L, CAO Z, LU H, et al Optimal design of one-dimensional elastic metamaterials through deep convolutional neural network and genetic algorithm[J]. Structures, 2023, 57: 105349
doi: 10.1016/j.istruc.2023.105349
|
27 |
石志飞, 程志宝, 向宏军. 周期结构理论及其在隔震减振中的应用[M]. 北京: 科学出版社, 2017: 270−276.
|
28 |
CAMLEY R, DJAFARIROUHANI B, DOBRZYNSKI L, et al Transverse elastic-waves in periodically layered infinite, semi-infinite, and slab media[J]. Journal of Vacuum Science and Technology B, Woodbury: Amer Inst Physics, 1983, 1 (2): 371- 375
doi: 10.1116/1.582559
|
29 |
LUO C, NING S, LIU Z, et al Interactive inverse design of layered phononic crystals based on reinforcement learning[J]. Extreme Mechanics Letters, 2020, 36: 100651
doi: 10.1016/j.eml.2020.100651
|
30 |
KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. (2013-12-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1312.6114.
|
31 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2014-12-22) [2023-9-13]. https://doi.org/10.48550/arXiv.1412.6980.
|
32 |
BAYDIN A G, PEARLMUTTER B A, RADUL A A. Automatic differentiation in machine learning: a survey [EB/OL]. (2015-2-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1502.05767.
|
33 |
ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [EB/OL]. (2016-5-24) [2023-9-13]. https://doi.org/10.48550/arXiv.1605.08695.
|
34 |
GUO T, LIU Y, HAN C An overview of stochastic quasi-newton methods for large-scale machine learning[J]. Journal of the Operations Research Society of China, 2023, 10: 245- 275
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|