Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1892-1901    DOI: 10.3785/j.issn.1008-973X.2024.09.014
土木与建筑工程     
基于深度学习和梯度优化的弹性超材料设计
肖力1,2(),曹志刚1,3,*(),卢浩冉1,黄志坚1,蔡袁强1
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江大学 平衡建筑研究中心,浙江 杭州 310028
3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
Elastic metamaterial design based on deep learning and gradient optimization
Li XIAO1,2(),Zhigang CAO1,3,*(),Haoran LU1,Zhijian HUANG1,Yuanqiang CAI1
1. Coastal and Urban Geotechnical Engineering Research Center, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China
 全文: PDF(3787 KB)   HTML
摘要:

为了建立灵活通用的弹性超材料快速迭代设计框架,并实现考虑材料离散性的拓扑结构和材料参数同步优化,提出基于深度学习和梯度优化的设计方法. 以变分自动编码器和带隙神经网络组成的设计网络作为框架,采用自动微分技术和梯度优化算法,利用梯度信息迭代调整设计变量;提出协同优化策略以考虑材料离散性,使结构优化的同时在材料库中选择最佳材料. 基于所提方法分别进行约束条件下带隙宽度最大化和指定带隙区间设计,并探讨同步优化和拓扑构型的影响. 结果表明,与材料和拓扑结构的单独优化相比,同步优化具有更优越的性能;在相同带隙目标和材料组成下,多层构型可以设计出更小尺寸的元胞. 频域和时域分析的数值模拟结果表明,所设计的超材料结构在目标带隙范围内表现出明显的减振性能.

关键词: 弹性超材料带隙深度学习梯度优化材料选择    
Abstract:

A novel design method based on deep learning and gradient optimization was proposed to establish a flexible and general framework for fast iterative design of elastic metamaterials and achieve simultaneous optimization of topology structure and material considering material discretization. The design network composed of variational autoencoders and band gap neural network was developed as the framework, and auto-differentiation techniques and gradient optimization algorithms were employed to iteratively tune the design variables with the gradient information. Furthermore, a co-optimization strategy was further proposed to consider the material discretization, so that the structure was optimized while the optimal material was selected from the material depot. Band gap width maximization under constraints and on-demand design were carried out respectively, and the effects of simultaneous optimization and topological configuration were explored. Results showed that the simultaneous optimization provided superior performance compared to separate optimization of materials and topology structures. Additionally, the multilayer configuration can achieve basic units with smaller sizes under the same objectives and material composition. Furthermore, the numerical simulation results of frequency and time domain analyses showed that the designed elastic metamaterials exhibited significant vibration damping performance in the target band gap range.

Key words: elastic metamaterial    band gap    deep learning    gradient optimization    material selection
收稿日期: 2023-08-05 出版日期: 2024-08-30
CLC:  TB 34  
基金资助: 国家自然科学基金资助项目(51978611);浙江省杰出青年科学基金资助项目(LR21E080004).
通讯作者: 曹志刚     E-mail: xiaoli1104@zju.edu.cn;caozhigang2011@zju.edu.cn
作者简介: 肖力(1999—),男,硕士生,从事工程超材料优化设计研究. orcid.org/0000-0002-0044-6497. E-mail:xiaoli1104@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖力
曹志刚
卢浩冉
黄志坚
蔡袁强

引用本文:

肖力,曹志刚,卢浩冉,黄志坚,蔡袁强. 基于深度学习和梯度优化的弹性超材料设计[J]. 浙江大学学报(工学版), 2024, 58(9): 1892-1901.

Li XIAO,Zhigang CAO,Haoran LU,Zhijian HUANG,Yuanqiang CAI. Elastic metamaterial design based on deep learning and gradient optimization. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1892-1901.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.014        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1892

图 1  一维弹性超材料示意图
材料E/MPaνρ/(kg·m?3)
C30300000.2002500
C40325000.2002500
#11 橡胶0.810.466837
#71 橡胶1.970.4401315
#94 橡胶0.820.4071032
表 1  材料库中的部分材料参数
图 2  变分自动编码器示意图
图 3  生成器训练收敛图
图 4  带隙神经网络示意图
限值Es/MPaνsρs/(kg·m?3)
下限10.201500
上限1000.452200
表 2  土层参数的范围
图 5  预测带隙宽度和实际值之间的对比图
图 6  前向计算和反向传播过程
图 7  协同优化策略流程图
工况橡胶拓扑结构ωl/Hzωu/Hztd 1)
1)注:上述设计时间结果均为取10次测试后的平均值.
1#11[0 0 1 1 1 1 1 2 2 2]55.2141.33.83 s
2#11[0 0 0 0 1 1 1 1 1 2]52.1144.03.87 s
3#94[1 1 1 2 2 2 0 0 0 0]40.2149.14.38 s
GA+BGNN#94[1 1 1 2 2 2 0 0 0 0]40.2149.1925.3 s
GA+TMM#94[1 1 1 2 2 2 0 0 0 0]40.2149.17.8 h
表 3  约束条件带隙宽度最大化的设计结果及与遗传算法设计的对比
图 8  工况3迭代收敛图及最优材料选择
图 9  不同场地条件下指定带隙区间设计的结果
图9土层类型场地土层参数
Es/MPaνsρs/(kg·m?3)
(a)软土10.401600
(b)中硬土500.351800
(c)硬土1000.302000
表 4  场地土层参数(条件变量)
图 10  超材料-土二维有限元分析结果
1 KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71 (13): 2022- 2025
doi: 10.1103/PhysRevLett.71.2022
2 LIU Z, ZHANG X, MAO Y, et al Locally resonant sonic materials[J]. Science, 2000, 289 (5485): 1734- 1736
doi: 10.1126/science.289.5485.1734
3 唐豪, 陈晓斌, 唐孟雄, 等 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43 (12): 2169- 2179
TANG Hao, CHENG Xiaobing, TANG Mengxiong, et al Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (12): 2169- 2179
doi: 10.11779/CJGE202112003
4 CHENG Z, SHI Z, MO Y Complex dispersion relations and evanescent waves in periodic beams via the extended differential quadrature method[J]. Composite Structures, 2018, 187: 122- 136
doi: 10.1016/j.compstruct.2017.12.037
5 DEASI R, GUHA A, SESHU P Modelling and simulation of active and passive seat suspensions for vibration attenuation of vehicle occupants[J]. International Journal of Dynamics and Control, 2021, 9 (4): 1423- 1443
doi: 10.1007/s40435-021-00788-2
6 LI X, CHENG S, YANG H, et al Optimization of vibration characteristics and directional propagation of plane waves in branching ligament structures of wind models[J]. Results in Physics, 2023, 47: 106345
doi: 10.1016/j.rinp.2023.106345
7 LI X, CHENG S, YANG H, et al Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators[J]. Physica A, 2023, 615: 128600
doi: 10.1016/j.physa.2023.128600
8 XIAO L, CAO Z, LU H, et al Controllable and scalable gradient-driven optimization design for two-dimensional metamaterials based on deep learning[J]. Composite Structures, 2024, 337: 118072
doi: 10.1016/j.compstruct.2024.118072
9 葛倩倩, 于桂兰 有覆层土体中部分埋入式表面波屏障[J]. 工程力学, 2020, 37 (Suppl.1): 249- 253
GE Qianqian, YU Guilan A partially embedded periodic barriers for surface waves in soil with a covered layer[J]. Engineering Mechanics, 2020, 37 (Suppl.1): 249- 253
doi: 10.6052/j.issn.1000-4750.2019.04.S046
10 YI G, YOUN B A comprehensive survey on topology optimization of phononic crystals[J]. Structural and Multidisciplinary Optimization, 2016, 54 (5): 1315- 1344
doi: 10.1007/s00158-016-1520-4
11 熊远皓, 李凤明, 张传增 周期结构振动带隙特性优化研究进展[J]. 哈尔滨工程大学学报, 2022, 43 (9): 1229- 1240
XIONG Yuanhao, LI Fengming, ZHANG Chuanzeng Research progress on the optimization of vibration band-gap characteristics for periodic structures[J]. Journal of Harbin Engineering University, 2022, 43 (9): 1229- 1240
12 WANG X, WAN S, ZHOU P, et al Topology optimization of periodic pile barriers and its application in vibration reduction for plane waves[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107119
doi: 10.1016/j.soildyn.2021.107119
13 ZHOU P, WAN S, WANG X, et al Topology optimization of the periodic pile barrier with initial stresses arranged in rectangular and equilateral triangular lattices[J]. Structures, 2023, 51: 628- 639
doi: 10.1016/j.istruc.2023.03.013
14 LIU Z, ZHU D, RODRIGUES S P, et al Generative model for the inverse design of metasurfaces[J]. Nano Letters, 2018, 18 (10): 6570- 6576
doi: 10.1021/acs.nanolett.8b03171
15 贾宇翔, 王甲富, 陈维, 等 基于智能算法的超材料快速优化设计方法研究进展[J]. 雷达学报, 2021, 10 (2): 220- 239
JIA Yuxiang, WANG Jiafu, CHEN Wei, et al Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 2021, 10 (2): 220- 239
doi: 10.12000/JR21027
16 JIN Y, HE L, WEN Z, et al Intelligent on-demand design of phononic metamaterials[J]. Nanophotonics, 2022, 11 (3): 439- 460
doi: 10.1515/nanoph-2021-0639
17 LI X, NING S, LIU Z, et al Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112737
doi: 10.1016/j.cma.2019.112737
18 GURBUZ C, KRONOWETTER F, DIETZ C, et al Generative adversarial networks for the design of acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2021, 149 (2): 1162- 1174
doi: 10.1121/10.0003501
19 曹蕾蕾, 朱旺, 武建华, 等 基于人工神经网络的声子晶体逆向设计[J]. 力学学报, 2021, 53 (7): 1992- 1998
CAO Leilei, ZHU Wang, WU Jianhua, et al Inverse design of phononic crystals by artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (7): 1992- 1998
doi: 10.6052/0459-1879-21-142
20 LIU C, YU G Intelligent design of engineered metabarrier based on deep learning[J]. Composite Structures, 2022, 280: 114911
doi: 10.1016/j.compstruct.2021.114911
21 LIU C, YU G Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114925
doi: 10.1016/j.cma.2022.114925
22 LIU C, YU G Deep learning-based topology design of periodic barrier for full-mode waves[J]. Construction and Building Materials, 2022, 314: 125579
doi: 10.1016/j.conbuildmat.2021.125579
23 LIU D, TAN Y, KHORAM E, et al Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5 (4): 1365- 1369
doi: 10.1021/acsphotonics.7b01377
24 ABUEIDDA D W, ALMASRI M, AMMOURAH R, et al Prediction and optimization of mechanical properties of composites using convolutional neural networks[J]. Composite Structures, 2019, 227: 111264
doi: 10.1016/j.compstruct.2019.111264
25 CUI X, WANG S, HU S A method for optimal design of automotive body assembly using multi-material construction[J]. Materials and Design, 2008, 29 (2): 381- 387
doi: 10.1016/j.matdes.2007.01.024
26 XIAO L, CAO Z, LU H, et al Optimal design of one-dimensional elastic metamaterials through deep convolutional neural network and genetic algorithm[J]. Structures, 2023, 57: 105349
doi: 10.1016/j.istruc.2023.105349
27 石志飞, 程志宝, 向宏军. 周期结构理论及其在隔震减振中的应用[M]. 北京: 科学出版社, 2017: 270−276.
28 CAMLEY R, DJAFARIROUHANI B, DOBRZYNSKI L, et al Transverse elastic-waves in periodically layered infinite, semi-infinite, and slab media[J]. Journal of Vacuum Science and Technology B, Woodbury: Amer Inst Physics, 1983, 1 (2): 371- 375
doi: 10.1116/1.582559
29 LUO C, NING S, LIU Z, et al Interactive inverse design of layered phononic crystals based on reinforcement learning[J]. Extreme Mechanics Letters, 2020, 36: 100651
doi: 10.1016/j.eml.2020.100651
30 KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. (2013-12-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1312.6114.
31 KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2014-12-22) [2023-9-13]. https://doi.org/10.48550/arXiv.1412.6980.
32 BAYDIN A G, PEARLMUTTER B A, RADUL A A. Automatic differentiation in machine learning: a survey [EB/OL]. (2015-2-20) [2023-9-13]. https://doi.org/10.48550/arXiv.1502.05767.
33 ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [EB/OL]. (2016-5-24) [2023-9-13]. https://doi.org/10.48550/arXiv.1605.08695.
34 GUO T, LIU Y, HAN C An overview of stochastic quasi-newton methods for large-scale machine learning[J]. Journal of the Operations Research Society of China, 2023, 10: 245- 275
[1] 李凡,杨杰,冯志成,陈智超,付云骁. 基于图像识别的弓网接触点检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1801-1810.
[2] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[3] 李林睿,王东升,范红杰. 基于法条知识的事理型类案检索方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1357-1365.
[4] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[5] 宋娟,贺龙喜,龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.
[6] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[7] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[8] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[9] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[10] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[11] 钱庆杰,余军合,战洪飞,王瑞,胡健. 基于DL-BiGRU多特征融合的注塑件尺寸预测方法[J]. 浙江大学学报(工学版), 2024, 58(3): 646-654.
[12] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.
[13] 孙雪菲,张瑞峰,关欣,李锵. 强化先验骨架结构的轻量型高效人体姿态估计[J]. 浙江大学学报(工学版), 2024, 58(1): 50-60.
[14] 郑超昊,尹志伟,曾钢锋,许月萍,周鹏,刘莉. 基于时空深度学习模型的数值降水预报后处理[J]. 浙江大学学报(工学版), 2023, 57(9): 1756-1765.
[15] 杨哲,葛洪伟,李婷. 特征融合与分发的多专家并行推荐算法框架[J]. 浙江大学学报(工学版), 2023, 57(7): 1317-1325.