Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1886-1891    DOI: 10.3785/j.issn.1008-973X.2024.09.013
土木与建筑工程     
临近既有河道的隧道掘进引起的地表沉降
姚言1,2(),应宏伟1,3,*(),王奎华1,朱成伟1,张昌桔4,李冰河5
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江数智交院科技股份有限公司,浙江 杭州 310012
3. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098
4. 杭州市市政工程集团有限公司,浙江 杭州 310014
5. 浙江省建筑设计研究院,浙江 杭州 310006
Surface settlement induced by tunneling near existing river channel
Yan YAO1,2(),Hongwei YING1,3,*(),Kuihua WANG1,Chengwei ZHU1,Changju ZHANG4,Binghe LI5
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Institute of Communication Co. Ltd, Hangzhou 310012, China
3. Key Laboratory of Ministry of Educational for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
4. Hangzhou Municipal Engineering Group Co. Ltd, Hangzhou 310014, China
5. Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310006, China
 全文: PDF(1041 KB)   HTML
摘要:

传统的隧道施工诱发地面沉降问题的研究通常假定地面为水平,目前针对大直径盾构或顶管隧道工程在既有河道附近的复杂边界条件下掘进所引起的地面沉降的研究不足. 以杭州某泥水平衡掘进顶管法隧道工程实例为背景,基于影像源法,考虑土体非均匀收敛,采用叠加原理给出临近既有河道条件下隧道施工引起地表沉降的解析解,并与工程实测数据进行对比. 参数分析表明,隧道与河道间的水平距离越小,地表沉降槽的非对称性越显著,由隧道掘进引起的地表沉降越大;与无河道情况相比,沉降槽峰值的增幅最大可超过30%,从环境保护和施工安全的角度出发,在实际工程中隧道施工时应尽量远离河道;随着隧道埋深的增大,由隧道掘进引起的地表沉降越小,而当隧道拱腰深度大于邻近既有河道深度时,靠近河道附近的地表沉降明显大于无河道情况下的,此时更应重视既有河道的影响.

关键词: 隧道掘进影像源法邻近河道地表沉降解析解    
Abstract:

The research on ground settlement induced by tunnel construction usually assumes that the ground is horizontal. Currently, there is insufficient research on ground settlement for large-diameter shield or pipe jacking tunnel engineering under complex boundary conditions near existing river channels. An analytical solution of the surface settlement caused by tunneling near the existing river channel was proposed, based on the background of a slurry balanced pipe jacking tunnel project in Hangzhou and considering the non-uniform convergence of the soil with the virtual mirror technology and the superposition method. The comparison with the measured data verified the rationality of the solution. Further parameter analysis showed that the smaller the horizontal distance between the tunnel and the river channel, the more significant the asymmetry of surface settlement trough, and the greater the surface settlement induced by the tunneling. Compared to the absence of a river channel, the peak increase in settlement trough may be greater than 30%. Tunneling construction was advised to be as far away from the river channel as possible in the actual project from the perspective of environmental protection and construction safety. The surface settlement caused by the tunneling decreased as the burial depth of the tunnel increased. The surface settlement near the river channel was significantly greater than that with the absence of the river channel, when the depth of the arch waist of the tunnel was greater than the depth of the adjacent river channel. In this sense, more attention should be paid to the influence of the existing river channel.

Key words: tunneling construction    virtual mirror technology    adjacent river channel    surface settlement    analytical solution
收稿日期: 2023-07-29 出版日期: 2024-08-30
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(51678523); 浙江省建设科研资助项目(2018K025); 杭州市建设科研资助项目(2018027).
通讯作者: 应宏伟     E-mail: yaoyan2010@126.com;ice898@zju.edu.cn
作者简介: 姚言(1997—),男,工程师,硕士,从事地下工程研究. orcid.org/0009-0000-6585-0418. E-mail:yaoyan2010@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
姚言
应宏伟
王奎华
朱成伟
张昌桔
李冰河

引用本文:

姚言,应宏伟,王奎华,朱成伟,张昌桔,李冰河. 临近既有河道的隧道掘进引起的地表沉降[J]. 浙江大学学报(工学版), 2024, 58(9): 1886-1891.

Yan YAO,Hongwei YING,Kuihua WANG,Chengwei ZHU,Changju ZHANG,Binghe LI. Surface settlement induced by tunneling near existing river channel. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1886-1891.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1886

图 1  临近河道掘进的隧道简化分析模型
图 2  地表沉降解析计算模型
图 3  各方法计算结果与实测地表沉降的比较
图 4  不同L情况下的地表沉降曲线
图 5  不同河道深度情况下的地表沉降曲线
图 6  不同隧道埋深情况下的地表沉降曲线
图 7  不同泊松比情况下的地表沉降曲线
1 魏纲, 徐日庆 软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报, 2005, 27 (9): 1077- 1081
WEI Gang, XU Riqing Prediction of longitudinal ground deformation due to tunnel construction with shield in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (9): 1077- 1081
doi: 10.3321/j.issn:1000-4548.2005.09.020
2 朱忠隆, 张庆贺, 易宏伟. 软土隧道纵向地表沉降的随机预测方法[J]. 岩土力学, 2001, 22(1): 56−59.
ZHU Zhonglong, ZHANG Qinghe, YI Hongwei. Stochastic theory for predicting longitudinal settlement in soft-soil tunnel [J]. Rock and Soil Mechanics , 22(1): 56−59.
3 刘大刚, 陶德敬, 王明年 地铁双隧道施工引起地表沉降及变形的随机预测方法[J]. 岩土力学, 2008, 29 (12): 3422- 3426
LIU Dagang, TAO Dejing, WANG Mingnian Stochastic method for predicting ground surface settlement and deformation induced by metro double tube tunneling[J]. Rock and Soil Mechanics, 2008, 29 (12): 3422- 3426
doi: 10.3969/j.issn.1000-7598.2008.12.045
4 魏纲, 周杨侃 随机介质理论预测近距离平行盾构引起的地表沉降[J]. 岩土力学, 2016, 37 (Suppl.2): 113- 119
WEi Gang, ZHOU Yangkan A simplified method for predicting ground settlement caused by adjacent parallel twin shield tunnel construction based on stochastic medium theory[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.2): 113- 119
5 SAGASETA C Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37 (3): 301- 320
6 VERRUIJT A, BOOKER J R Discussion: surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1998, 48 (5): 709- 713
7 LOGANATHAN N, POULOS H G Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (9): 846- 856
doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
8 PARK K H Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4 (4): 310- 318
doi: 10.1061/(ASCE)1532-3641(2004)4:4(310)
9 林存刚, 夏唐代, 梁荣柱, 等 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014, 36 (8): 1438- 1446
LIN Cungang, XIA Tangdai, LIANG Rongzhu, et al Estimation of shield tunneling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1438- 1446
doi: 10.11779/CJGE201408009
10 张治国, 赵其华, 徐晨, 等 基于影像源法的基坑开挖对邻近单桩影响简化分析[J]. 岩土力学, 2016, 37 (7): 2011- 2020
ZHANG Zhiguo, ZHAO Qihua, XU Chen, et al Simplified analysis of adjacent single-pile response subjected to foundation pit excavation based on virtual image technique[J]. Rock and Soil Mechanics, 2016, 37 (7): 2011- 2020
11 徐日庆, 程康, 应宏伟, 等 基于影像源法的基坑开挖引起的土体水平位移预测[J]. 岩土工程学报, 2019, 41 (Suppl.1): 17- 20
XU Riqing, CHENG Kang, YING Hongwei, et al Prediction of horizontal displacement of soils caused by excavation of foundation pits based on virtual mirror technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Suppl.1): 17- 20
12 曹小林. 半无限空间中隧道横断面应力和位移的复变函数解[D]. 兰州: 兰州理工大学, 2017.
CAO Xiaolin. Complex variable function method of stress and displacement of tunnel cross section in a half space [D]. Lanzhou: Lanzhou University of Technology, 2017.
13 王敏中, 王炜, 武际可. 弹性力学教程[M]. 北京: 北京大学出版社, 2011: 299−301.
14 应宏伟, 姚言, 王奎华, 等 双线平行顶管上跨地铁盾构隧道施工环境影响实测分析[J]. 上海交通大学学报, 2023, 57 (12): 1639- 1647
YING Hongwei, YAO Yan, WANG Kuihua, et al Observed environment response caused by construction of double-line parallel pipe jacking crossing over metro shield tunnels[J]. Journal of Shanghai Jiaotong University, 2023, 57 (12): 1639- 1647
[1] 李建斌,武颖莹,李鹏宇,郑霄峰,徐剑安,鞠翔宇. 基于局部线性嵌入和支持向量机回归的TBM施工参数预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1426-1435.
[2] 颉芳弟,翟强,顾伟红. 基于动态贝叶斯网络的TBM卡机风险预测[J]. 浙江大学学报(工学版), 2021, 55(7): 1339-1350.
[3] 毛奕喆,龚国芳,周星海,王飞. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454.
[4] 王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
[5] 陈玉羲,龚国芳,石卓,杨华勇. 基于施工数据的TBM支撑推进协调控制系统[J]. 浙江大学学报(工学版), 2019, 53(2): 250-257.
[6] 田彦朝,贺飞,张啸. 敞开式TBM护盾半径适应性设计[J]. 浙江大学学报(工学版), 2019, 53(12): 2280-2288.
[7] 张娜,李建斌,荆留杰,杨晨,陈帅. 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报(工学版), 2019, 53(10): 1977-1985.
[8] 刘建琴, 邢振华, 宾怀成, 郭伟. 复合岩层地质下硬岩隧道掘进机滚刀布局方法[J]. 浙江大学学报(工学版), 2019, 53(1): 166-173.
[9] 徐霄雁, 肖南, 范冰河. 常用柱面网格生成互承构型的可行性判定[J]. 浙江大学学报(工学版), 2018, 52(8): 1583-1595.
[10] 罗华, 陈祖煜, 龚国芳, 赵宇, 荆留杰, 王超. 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1566-1574.
[11] 林赉贶, 夏毅敏, 贾连辉, 贺飞, 杨妹, 杨凯. 安装参数与掘进参数对滚刀破岩阻力的影响[J]. 浙江大学学报(工学版), 2018, 52(6): 1209-1215.
[12] 潘以恒, 罗其奇, 周斌, 陈建平. 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(6): 1114-1122.
[13] 王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报(工学版), 2018, 52(3): 479-486.
[14] 夏毅敏, 钱聪, 李正光, 梅勇兵. 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报(工学版), 2018, 52(2): 233-239.
[15] 叶居东, 杨贞军, 刘国华, 姚勇. 超高性能混凝土-螺旋钢纤维拉拔力的解析解及实验验证[J]. 浙江大学学报(工学版), 2018, 52(10): 1911-1918.