机械工程、电气工程 |
|
|
|
|
基于XGBoost的隧道掘进机操作参数智能决策系统设计 |
王飞( ),龚国芳*( ),段理文,秦永峰 |
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 |
|
XGBoost based intelligent determination system design of tunnel boring machine operation parameters |
Fei WANG( ),Guo-fang GONG*( ),Li-wen DUAN,Yong-feng QIN |
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.001
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I4/633
|
1 |
MAIDL B, SCHMID L, RITZ W, et al. Hardrock tunnel boring machines [M]. [S. l.]: Wiley, 2008.
|
2 |
王超. TBM岩机映射关系及其优化决策方法研究[D]. 杭州: 浙江大学, 2018. WANG Chao. Research on the relationship of rock type and machine parameters of TBM and its optimal decision method [D]. Hangzhou: Zhejiang University, 2018.
|
3 |
YIMIN X, DUAN Y, CHENGHUAN H, et al Numerical simulation of ventilation and dust suppression system for open-type TBM tunneling work area[J]. Tunnelling and Underground Space Technology, 2016, 56 (3): 70- 78
|
4 |
周赛群. 全断面硬岩掘进机(TBM)驱动系统研究[D]. 杭州: 浙江大学, 2008. ZHOU Sai-qun. Study on drive system of the full-face tunnel boring machine [D]. Hangzhou: Zhejiang University, 2008.
|
5 |
刘然. 盾构机刀盘同步驱动系统自适应均载控制研究[D]. 大连: 大连理工大学, 2013. LIU Ran. Research on adaptive load sharing control for sychronous driving system of cutterhead in shield machines [D]. Dalian: Dalian University of Technology, 2013.
|
6 |
BARLA G, PELIZZA S. TBM tunnelling in difficult ground conditions [C]// ISRM International Symposium. Melbourne: International Society for Rock Mechanics and Rock Engineering, 2000.
|
7 |
OKUBO S, FUKUI K, CHEN W Expert system for applicability of tunnel boring machines in Japan[J]. Rock Mechanics and Rock Engineering, 2003, 36 (4): 305- 322
doi: 10.1007/s00603-002-0049-6
|
8 |
HASSANPOUR J, ROSTAMI J, KHAMEHCHIYAN M, et al Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel[J]. Geomechanics and Geoengineering, 2009, 4 (4): 287- 297
doi: 10.1080/17486020903174303
|
9 |
HASSANPOUR J, ROSTAMI J, KHAMEHCHIYAN M, et al TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel[J]. Rock Mechanics and Rock Engineering, 2010, 43 (4): 427- 445
doi: 10.1007/s00603-009-0060-2
|
10 |
熊帆. 基于 PSO-SVR 算法的 TBM 掘进效率预测及围岩分级研究[D]. 西安: 长安大学, 2016. XIONG Fan. Research of TBM excavation efficiency prediction and rock classification based on the PSO-SVR algorithm [D]. Xi’an: Chang’an University, 2016.
|
11 |
罗华. 基于线性回归和深度置信网络的 TBM 性能预测研究[D]. 杭州: 浙江大学, 2018. LUO Hua. Application of linear regression analysis and deep belief network for performance prediction of TBM [D]. Hangzhou: Zhejiang University, 2018.
|
12 |
杜立杰, 齐志冲, 韩小亮, 等 基于现场数据的TBM可掘性和掘进性能预测方法[J]. 煤炭学报, 2015, 40 (6): 1284- 1289 DU Li-jie, QI Zhi-chong, HAN Xiao-liang, et al Prediction method for the boreability and performance of hard rock TBM based on boring data on site[J]. Journal of China Coal Society, 2015, 40 (6): 1284- 1289
|
13 |
李守巨, 曹丽娟 盾构机掘进过程中的决策支持系统[J]. 信息技术, 2011, (10): 39- 42 LI Shou-jun, CAO Li-juan Decision support system in shield tunneling[J]. Information Technology, 2011, (10): 39- 42
doi: 10.3969/j.issn.1009-2552.2011.10.010
|
14 |
CHEN K, ZHENG Z, ZHANG Q Residual analysis in inverse identification of total thrust on shield tunneling machine[J]. Applied Mechanics and Materials, 2013, 455: 557- 560
doi: 10.4028/www.scientific.net/AMM.455.557
|
15 |
张娜, 李建斌, 荆留杰, 等 TBM掘进参数智能控制系统的研究与应用[J]. 隧道建设, 2018, 38 (10): 1734- 1740 ZHANG Na, LI Jian-bin, JING Liu-jie, et al Study and application of intelligent control system of TBM tunneling parameters[J]. Tunnel Construction, 2018, 38 (10): 1734- 1740
doi: 10.3973/j.issn.2096-4498.2018.10.019
|
16 |
YAGIZ S, GOKCEOGLU C, SEZER E, et al Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 808- 814
|
17 |
JAMSHIDI A Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis[J]. Modeling Earth Systems and Environment, 2018, 4 (1): 383- 394
doi: 10.1007/s40808-018-0432-2
|
18 |
GHASEMI E, YAGIZ S, ATAEI M Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic[J]. Bulletin of Engineering Geology and the Environment, 2014, 73 (1): 23- 35
doi: 10.1007/s10064-013-0497-0
|
19 |
JAVAD G, NARGES T Application of artificial neural networks to the prediction of tunnel boring machine penetration rate[J]. Mining Science and Technology (China), 2010, 20 (5): 727- 733
doi: 10.1016/S1674-5264(09)60271-4
|
20 |
王超, 龚国芳, 杨华勇, 等 NSVR 硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报:工学版, 2018, 52 (3): 479- 486 WANG Chao, GONG Guo-fang, YANG Hua-yong, et al NVSR based predictive analysis of cutterhead torque for hard rock TBM[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 479- 486
|
21 |
吴煜宇, 吴湘滨, 尹俊涛 关于 TBM 施工隧洞围岩分类方法的研究[J]. 水文地质工程地质, 2006, 33 (5): 120- 122 WU Yu-yu, WU Xiang-bin, YIN Jun-tao Research with relation to rock classification of TBM Tunnels[J]. Hydrogeology and Engineering Geology, 2006, 33 (5): 120- 122
doi: 10.3969/j.issn.1000-3665.2006.05.028
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|