Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (8): 1583-1595    DOI: 10.3785/j.issn.1008-973X.2018.08.019
土木与水利工程     
常用柱面网格生成互承构型的可行性判定
徐霄雁, 肖南, 范冰河
浙江大学 建筑工程学院, 浙江 杭州 310058
Feasibility determination of common cylindrical grids converting to reciprocal configurations
XU Xiao-yan, XIAO Nan, FAN Bing-he
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2590 KB)   HTML
摘要:

分析互承构型的几何关系、物理关系和几何协调关系,提出三层次判定法,系统地分析并且求解柱面网格直接转换法生成互承构型的18种方案的可行性.对柱面网壳常用网格型式进行预判定后,通过自编的Matlab程序,完成旋转法、扩展平移法和收缩法对四边形网格、联方型网格、三向网格I型和三向网格II型的直接转换.采用三层次判定法对14种方案进行第一层次的偏心距和差零值判定、第二层次单元块的物理判定和第三层次所有节点的几何协调性判定.给出3种可行方案的偏心距解析表达式,证明一般光滑曲线挤出曲面的四边形网格也能够生成互承构型,并且解析关系与柱面的相同.判定和分析结果表明,四边形和三向网格II型的互承构型具有良好的工程适用性,能够实现快速搭建.

Abstract:

The geometry, physical and geometrical coordinate relations of reciprocal configuration were analyzed and three-level-determination method was put forward. Eighteen possible schemes from cylindrical grids to reciprocal configurations by direct conversion approaches were systematically analyzed and solved. After preliminary judgement on the grid patterns commonly used for cylindrical reticulated shell, rotation method, extended translation method and contraction method were applied for direct conversion of quadrilateral grid, lamella grid, three-way grid type I and three-way grid type Ⅱ on cylindrical shell to convert by self-programmed Matlab. Three-level determinations were carried out for fourteen schemes after preliminary judgement conducted, namely voiding the eccentricity sum difference as the first level judgement, the physical conditions in elements around a node as the second level judgement, and the geometric coordination at all nodes as the third level. The eccentricity formulas of three feasible schemes were analytically proposed, and the fact is proved that general quadrilateral grids with smooth curve on the extrusion surface can be converted to reciprocal configurations which shared the same geometric analytical relationships with those of cylindrical reticulated shell. Results show that the reciprocal configurations with quadrilateral grid and three-way grid type Ⅱ are well suitable for engineering application requiring rapid construction.

收稿日期: 2017-06-09 出版日期: 2018-08-23
CLC:  TU399  
通讯作者: 肖南,男,博士,副教授.orcid.org/0000-0003-3778-0971.     E-mail: sholran@zju.edu.cn
作者简介: 徐霄雁(1992-),女,硕士,从事互承结构的几何构型研究.orcid.org/0000-0003-2367-5484.E-mail:xuxyv90@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐霄雁, 肖南, 范冰河. 常用柱面网格生成互承构型的可行性判定[J]. 浙江大学学报(工学版), 2018, 52(8): 1583-1595.

XU Xiao-yan, XIAO Nan, FAN Bing-he. Feasibility determination of common cylindrical grids converting to reciprocal configurations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1583-1595.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.019        http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1583

[1] PUGNALE A, SASSONE M. Structural reciprocity:critical overview and promising research/design issues[J]. Nexus Network Journal, 2014, 16(1):9-35.
[2] PARIGI D, PUGNALE A. Three-dimensionality in reciprocal structures:concepts and generative rules[J]. Nexus Network Journal, 2014, 16(1):151-177.
[3] PARIGI D, KIRKEGAARD P H. Design and fabrication of free-form reciprocal structures[J]. Nexus Network Journal, 2014, 16(1):69-87.
[4] BAVEREL O L S. Nexorades:a family of interwoven space structures[D]. Guildford:University of Surrey, 2000
[5] SENECHAL B, DOUTHE C, BAVEREL O. Analytical investigations on elementary nexorades[J]. International Journal of Space Structures, 2011, 26(4):313-320.
[6] RIZZUTO J P. Eccentricity orientation of bolted connections in space structure configurations using reciprocally supported elements[J]. Journal of the International Association for Shell and Spatial Structures, 2014, 55(1):49-62.
[7] BAVEREL O, NOOSHIN H, KUROIWA Y. Configuration processing of nexorades using genetic algorithms[J]. Journal of the International Association for Shell and Spatial Structures, 2004, 45(2):99-108.
[8] PARIGI D, KIRKEGAARD P H, SASSONE M. Hybrid optimization in the design of reciprocal structures[C/OL]//Proceedings of the IASS Symposium. Seoul:IASS-APCS, 2012.[2018-05-24]. https://www.researchgate./netprofile/Mario_Sassone/publication
[9] 邹丁, 肖南. 互承型结构构型生成优化研究[J]. 空间结构, 2016, 22(3):17-26 ZOU Ding, XIAO Nan. Morphogenesis of reciprocal structure by optimization methods[J]. Spatial Structures, 2016, 22(3):17-26
[10] SONG P, FU C W, GOSWAMI P, et al. Reciprocal frame structures made easy[J]. ACM Transactions on Graphics (TOG), 2013, 32(4):94.
[11] SONG P, FU C W, GOSWAMI P, et al. An interactive computational design tool for large reciprocal frame structures[J]. Nexus Network Journal, 2014, 16(1):109-118.
[12] MELLADO N, SONG P, YAN X, et al. Computational design and construction of notch-free reciprocal frame structures[M]//Block P, Knippers J, Mitra N J, et al. Advances in Architectural Geometry 2014. Cham:Springer International Publishing, 2015:181-197
[13] THONNISSEN U. A form-finding instrument for reciprocal structures[J]. Nexus Network Journal, 2014, 16(1):89-107.
[14] PARIGI D, KIRKEGAARD P H. The reciprocalizer:an agile design tool for reciprocal structures[J]. Nexus Network Journal, 2014, 16(1):61-68.
[15] PIKER D. Kangaroo:live physics for rhino and grasshopper[J]. Computer Software, 2010
[16] ANASTAS Y, RHODE-BARBARIGOS L, ADRIAENSSENS S. Design-to-construction workflow for cell-based pattern reciprocal free-form structures[J]. Journal of the International Association for Shell and Spatial Structures, 2016, 57(2):159-176.
[17] CORIO E, LACCONE F, PIETRONI N, et al. Conception and parametric design workflow for a timber large-spanned reversible grid shell to shelter the archaeological site of the roman shipwrecks in Pisa[J]. International Journal of Computational Methods and Experimental Measurements, 2017, 5(4):551-561.
[18] 钱若军, 杨联萍, 胥传熹, 等. 空间格构结构设计[M]. 南京:东南大学出版社, 2007:22-25

No related articles found!