Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1874-1885    DOI: 10.3785/j.issn.1008-973X.2024.09.012
土木与建筑工程     
大跨度公铁两用斜拉-悬索协作体系桥断索动力响应
张兴标1(),王涛1,*(),姚森2,叶华文3,王路1,白伦华4
1. 西南科技大学 土木工程与建筑学院,四川 绵阳 621010
2. 中铁大桥局集团有限公司,湖北 武汉 430050
3. 西南交通大学 土木工程学院,四川 成都 610031
4. 佛山大学 交通与土木建筑学院,广东 佛山 528225
Dynamic response of cable fracture of long span road-rail cable-stayed suspension bridge
Xingbiao ZHANG1(),Tao WANG1,*(),Sen YAO2,Huawen YE3,Lu WANG1,Lunhua BAI4
1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
2. China Railway Major Bridge Engineering Group Co. Ltd, Wuhan 430050, China
3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
4. School of Transportation, Civil Engineering and Architecture, Foshan University, Foshan 528225, China
 全文: PDF(5364 KB)   HTML
摘要:

研究大跨度公铁两用斜拉-悬索协作体系桥在极端作用下发生断索时桥梁结构及桥上列车的动力响应,以G3铜陵长江公铁大桥为研究对象,建立全桥有限元模型;研究各个位置斜拉索、吊索断裂后桥梁结构的动力响应;研究在列车-桥梁耦合振动作用下,各断索组合工况中桥梁及列车的动力响应. 结果表明:斜拉-悬索协作体系桥具有较高的结构刚度及安全冗余;在单根斜拉索、吊索断索后,可保持列车通行;在吊索区域单侧发生4根以上断索,可导致连续断索破坏;在斜拉索-吊索交替及斜拉索区域,单侧断索达到8根也不会发生连续断索破坏;断索动力放大系数取2.0合理,但仅对断索位置附近剩余吊索和斜拉索具有工程应用价值;当断索发生时,若列车经过,列车竖向加速度会发生突变,但仍在安全范围内;剩余斜拉索与吊索动应力增加主要来自于主梁作用,列车作用占比不超过13%.

关键词: 斜拉-悬索协作体系桥有限元方法断索动力响应列车-桥梁耦合振动    
Abstract:

Taking the G3 Tongling road-rail bridge as the research object, a finite element calculation model of bridge was established, in order to investigate the dynamic response of the bridge structure and the train on the bridge when the cables were fracturing under extreme action in long span road-rail cable-stayed suspension bridge. Firstly, the dynamic response of the bridge structure after stayed cables or suspender cable fracture was studied. Then, the dynamic response of the bridge and the train under the cable fracture conditions of the train-bridge coupling vibration was studied. Results showed that the cable-stayed suspension bridge had high structural stiffness and safety redundancy. After a single stayed cable or suspender cable fractured, the train could be maintained. Continuous cable fracture might occur when more than four cables were fracturing in one side of the suspender cables area of the bridge. Continuous cable fracture would not occur when eight cables were fracturing in one side of the stayed and suspender cables alternating region and the stayed cables region. Setting the dynamic amplification factor of cable fracture equal to 2.0 was reasonable, but they had engineering application value only for the remaining suspender cables and stayed cables near the fracture cables. When the cable was fracturing, if the train was passing by, the vertical acceleration of the train would change abruptly, but the acceleration was within the safe range. The stress increase of residual stayed cables and suspender cables was mainly due to the action of main girder, and the proportion of train action was less than 13%.

Key words: cable-stayed suspension bridge    finite element method    cable fracture    dynamic response    train-bridge coupled vibration
收稿日期: 2023-12-11 出版日期: 2024-08-30
CLC:  U 448  
基金资助: 国家自然科学基金资助项目(51708468,52278219);四川省自然科学基金资助项目(2023NSFSC0891);西南科技大学自然科学基金资助项目(20zx7125).
通讯作者: 王涛     E-mail: zhangxb1981@126.com;7015294@qq.com
作者简介: 张兴标(1981—),男,高级工程师,讲师,博士,从事缆索承重桥梁计算理论与工程实践研究. orcid.org/0009-0004-7794-0727. E-mail:zhangxb1981@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张兴标
王涛
姚森
叶华文
王路
白伦华

引用本文:

张兴标,王涛,姚森,叶华文,王路,白伦华. 大跨度公铁两用斜拉-悬索协作体系桥断索动力响应[J]. 浙江大学学报(工学版), 2024, 58(9): 1874-1885.

Xingbiao ZHANG,Tao WANG,Sen YAO,Huawen YE,Lu WANG,Lunhua BAI. Dynamic response of cable fracture of long span road-rail cable-stayed suspension bridge. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1874-1885.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.012        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1874

图 1  简单索-梁组合结构有限元模型示意图
工况号Fc/(104 N)Fd/(104 N)tx/std/sD6/m
11.05.0未断索0.5?0.1301
21.020.0未断索2.0?0.1301
31.020.010.01.0?0.6208
表 1  断索工况设置
图 2  简单索-梁模型不同断索工况下位移与索力动力响应
图 3  斜拉-悬索桥结构总体布置与有限元模型图
图 4  外侧吊索50#断索后桥梁结构动力响应
图 5  外侧斜拉索38#断索后桥梁结构动力响应
图 6  全桥外侧各个位置断索时剩余斜拉索、吊索最大应力响应
图 7  斜拉-悬索桥不同区域外侧断索的最大应力响应
工况编号列车数量列车行驶车道以及方向断索时第1轮对位置断裂吊索编号主梁提取结果位置
11第4车道正向(外侧)无斜拉索、吊索断裂跨中下层双侧端节点
21第4车道正向外侧吊索50#已断裂,桥梁静止状态跨中下层外侧端节点
31第4车道正向主梁位移最大时位置吊索50#,外侧跨中下层外侧端节点
41第4车道正向吊索50#锚点处吊索50#,外侧跨中下层外侧端节点
51第4车道正向吊索45#锚点处吊索45#,外侧吊索45#锚点处下层外侧节点
61第4车道正向斜拉索38#锚点处斜拉索38#,外侧斜拉索38#锚点处下层外侧节点
72第3、4车道正向吊索50#锚点处吊索50#,外侧跨中下层外侧端节点
84第1、2逆向,3、4车道正向外侧吊索50#已断裂,桥梁静止状态跨中下层外侧端节点
94第1、2逆向,3、4车道正向吊索50#锚点处吊索50#,外侧跨中下层外侧端节点
表 2  列车作用下发生断索时各个计算工况列表
图 8  工况1、2主梁中跨1/2点位移响应
图 9  工况3、4主梁中跨1/2点位移响应
图 10  工况3、4列车动力响应
图 11  工况5桥梁与列车动力响应
图 12  工况6桥梁与列车动力响应
图 13  工况1、4、6主梁竖向加速度响应
工况编号Q4Δσ1/MPaΔσ2/MPaB/%
40.42331.6350.65.73
70.56331.6358.17.99
90.61331.6372.712.39
表 3  吊索50#断索各个工况下列车作用占比
图 14  工况7桥梁与列车动力响应
图 15  工况8、9桥梁与列车动力响应
1 杨世聪, 张劲泉, 姚国文 在役桥梁拉吊索腐蚀-疲劳损伤与破断机理分析[J]. 公路交通科技, 2019, 36 (3): 80- 86
YANG Shicong, ZHANG Jinquan, YAO Guowen Analysis on corrosion-fatigue damage and fracture mechanism of cables/hangers in service bridges[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (3): 80- 86
2 卫星, 强士中 大跨独塔斜拉桥拉索梁端锚固区抗疲劳性能[J]. 西南交通大学学报, 2011, 46 (6): 940- 945
WEI Xing, QIANG Shizhong Fatigue performance of anchorage zone for long-span single pylon cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2011, 46 (6): 940- 945
3 张岗, 贺拴海, 宋超杰, 等 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34 (1): 1- 11
ZHANG Gang, HE Shuanhai, SONG Chaojie, et al Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34 (1): 1- 11
4 沈达佳, 胡志坚, 李杨 近场爆炸时斜拉索抗爆性能分析[J]. 振动与冲击, 2020, 39 (21): 250- 257
SHEN Dajia, HU Zhijian, LI Yang Anti-explosion performance of stay cable under near field blast load[J]. Journal of Vibration and Shock, 2020, 39 (21): 250- 257
5 王礼立, 陈国虞, 杨黎明 船桥碰撞过程引发的冲击动力学论题[J]. 振动与冲击, 2015, 34 (3): 14- 22
WANG Lili, CHEN Guoyu, YANG Liming Impact dynamics topics motivated by ship-bridge collision process[J]. Journal of Vibration and Shock, 2015, 34 (3): 14- 22
6 Post Tensioning Institute. Recommendations for stay cable design, testing and installation [S]. Phoenix: [s.n.], 2007.
7 WOLFF M, STAROSSEK U Cable loss and progressive collapse in cable-stayed bridges[J]. Bridge Structures, 2009, 5 (1): 17- 28
doi: 10.1080/15732480902775615
8 MOZOS C M, APARICIO A C Numerical and experi-mental study on the interaction cable structure during the failure of a stay in a cable stayed bridge[J]. Engineering Structures, 2011, 33 (8): 2330- 2341
doi: 10.1016/j.engstruct.2011.04.006
9 ZHOU Y, CHEN S Numerical investigation of cable breakage events on long-span cable-stayed bridges under stochastic traffic and wind-ScienceDirect[J]. Engineering Structures, 2015, 105: 299- 315
doi: 10.1016/j.engstruct.2015.07.009
10 ZHOU Y, CHEN S Framework of nonlinear dynamic simulation of long-span cable-stayed bridge and traffic system subjected to cable-loss incidents[J]. Journal of Structural Engineering, 2016, 142 (3): 04015160
doi: 10.1061/(ASCE)ST.1943-541X.0001440
11 HOANG V, KIYOMIYA O, AN T Experimental and dynamic response analysis of cable-stayed bridge due to sudden cable loss[J]. Journal of Structural Engineering, 2016, 62 (A): 50- 60
12 张羽, 方志, 卢江波, 等 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40 (5): 237- 246
ZHANG Yu, FANG Zhi, LU Jiangbo, et al Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40 (5): 237- 246
13 黄华, 白豪, 周文杰, 等 拉索损伤时V形双钢拱塔斜拉桥动力特性及抗震性能分析[J]. 长安大学学报: 自然科学版, 2021, 41 (2): 114- 124
HUANG Hua, BAl Hao, ZHOU Wenjie, et al Analysis of dynamic characteristics and seismic performance of V-shape double steel arch cable-stayed bridge with cable damage[J]. Journal of Chang’an University: Natural Science Edition, 2021, 41 (2): 114- 124
14 马亚飞, 彭安银, 王磊, 等 拉索失效和主梁损伤斜拉桥静力性能退化模型试验[J]. 中南大学学报: 自然科学版, 2022, 53 (2): 653- 664
MA Yafei, PENG Anyin, WANG Lei, et al Model test on static performance degradation of cable-stayed bridge with cable rupture and main girder damage[J]. Journal of Central South University: Science and Technology, 2022, 53 (2): 653- 664
15 沈锐利, 房凯, 官快 单根吊索断裂时自锚式悬索桥强健性分析[J]. 桥梁建设, 2014, 44 (6): 35- 39
SHEN Ruili, FANG Kai, GUAN Kuai Robustness analysis of self-anchored suspension bridge with loss of a single sling[J]. Bridge Construction, 2014, 44 (6): 35- 39
16 邱文亮, 吴广润 悬索桥吊索断裂动力响应分析的有限元模拟方法研究[J]. 湖南大学学报: 自然科学版, 2021, 48 (11): 22- 30
QIU Wenliang, WU Guangrun Research on simulation method of dynamic response analysis for suspension bridges subjected to hanger-breakage events[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (11): 22- 30
17 邱文亮, 杨浩荣, 吴广润 悬索桥断索动力响应有限元模型参数研究[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1685- 1692
QIU Wenliang, YANG Haorong, WU Guangrun Parameter study on finite element model of abrupt hanger-breakage event induced dynamic responses of suspension bridge[J]. Journal of ZheJiang University: Engineering Science, 2022, 56 (9): 1685- 1692
18 叶毅, 任阳阳, 邓余杰, 等 自锚式悬索桥断索动力冲击效应模型试验研究[J]. 土木与环境工程学报: 中英文, 2022, 44 (3): 1- 9
YE Yi, REN Yangyang, DENG Yujie, et al Model testing research of impact effect on self-anchored suspension bridge subjected to hangers fracture[J]. Journal of Civil and Environmental Engineering, 2022, 44 (3): 1- 9
19 刘伟庆, 宋佳润, 李雪红 大跨悬索桥吊索抗火性能与新防护结构研究[J]. 中国公路学报, 2022, 35 (1): 222- 237
LIU Weiqing, SONG Jiarun, LI Xuehong Research on fire resistance performance and new structure idea for long-span suspension bridge slings[J]. China Journal of Highway and Transport, 2022, 35 (1): 222- 237
20 李岩, 杨孝鹏, 陈逸民 考虑突发断索事故的车桥系统动力行为分析方法[J]. 东南大学学报: 自然科学版, 2023, 53 (6): 1156- 1164
LI Yan, YANG Xiaopeng, CHEN Yimin Dynamic behavior analysis method for vehicle-bridge system considering abrupt cable-breakage events[J]. Journal of Southeast University: Natural Science Edition, 2023, 53 (6): 1156- 1164
21 王涛, 胡宇鹏, 张兴标, 等 基于有限元-向量式有限元的斜拉桥非线性振动计算方法[J]. 振动与冲击, 2022, 41 (3): 129- 138
WANG Tao, HU Yupeng, ZHANG Xingbiao, et al Nonlinear vibration calculation method for cable-stayed bridge based on finite element and vector form finite element method[J]. Journal of Vibration and Shock, 2022, 41 (3): 129- 138
22 李东升, 高严培, 郭鑫 改进共旋坐标法的Timoshenko梁单元非线性分析[J]. 工程力学, 2022, 39 (11): 22- 30
LI Dongsheng, GAO Yanpei, GUO Xin Nonlinear analysis of timoshenko beam element based on improved corotational formulation[J]. Engineering Mechanics, 2022, 39 (11): 22- 30
doi: 10.6052/j.issn.1000-4750.2021.07.0508
23 王涛, 刘德贵, 胡安杰 基于流动坐标系的三维空间动力非线性有限元方法[J]. 振动与冲击, 2018, 37 (16): 14- 23
WANG Tao, LIU Degui, HU Anjie A nonlinear dynamic finite element method in 3D space based on the co-rotational formulation[J]. Journal of Vibration and Shock, 2018, 37 (16): 14- 23
24 王涛, 刘德贵, 黄辉 风、列车作用下大跨度斜拉桥索-梁相关振动研究[J]. 中国公路学报, 2021, 34 (4): 105- 118
WANG Tao, LIU Degui, HUANG Hui Investigation of cable-beam-related vibration in long-span cable-stayed bridge based on wind and train effects[J]. China Journal of Highway and Transport, 2021, 34 (4): 105- 118
25 沈锐利 悬索桥主缆系统设计及架设计算方法研究[J]. 土木工程学报, 1996, 29 (2): 3- 9
SHEN Ruili Calculation methods for design and erection of cable curve of suspension bridge[J]. China Civil Engineering Journal, 1996, 29 (2): 3- 9
26 王涛, 胡宇鹏, 张兴标, 等 基于遗传算法的斜拉桥成桥索力优化应用研究[J]. 重庆交通大学学报: 自然科学版, 2023, 42 (6): 9- 17
WANG Tao, HU Yupeng, ZHANG Xingbiao, et al Application of completed cable force optimization of cable-stayed bridge based on genetic algorithm[J]. Journal of Chongqing Jiaotong University: Natural Science, 2023, 42 (6): 9- 17
27 李永乐. 风-车-桥系统非线性空间耦合振动研究[D]. 成都: 西南交通大学, 2003.
LI Yongle. Nonlinear three-dimensional coupling vibration of wind-vehicle-bridge system [D]. Chengdu: Southwest Jiaotong University, 2003.
[1] 白聪儿,孙哲杰,秦美娟,王潇,刘勇. 风电机组传动链动力响应特性与支撑系统影响[J]. 浙江大学学报(工学版), 2023, 57(6): 1165-1174.
[2] 孔令刚,余佳,陈云敏. 船舶撞击近海风机群桩基础的离心模型试验[J]. 浙江大学学报(工学版), 2023, 57(2): 330-339.
[3] 邱文亮,杨浩荣,吴广润. 悬索桥断索动力响应有限元模型参数研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1685-1692.
[4] 黄一文,蒋楠,周传波,李海波,罗学东,姚颖康. 内壁腐蚀混凝土管道爆破动力失效机制[J]. 浙江大学学报(工学版), 2022, 56(7): 1342-1352.
[5] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[6] 凌道盛,盛文军,黄博,赵云. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1684-1693.
[7] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[8] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[9] 董红召, 章丽萍, 刘冬旭, 陈宁. 公共自行车系统服务点布设的有限元估算方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1097-1103.
[10] 欧阳小平,薛志全,彭超,周清和,杨华勇. 航空作动器的VL密封特性分析[J]. 浙江大学学报(工学版), 2015, 49(9): 1755-1761.
[11] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[12] 伍程杰, 龚晓南, 俞峰, 楼春晖, 刘念武. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报(工学版), 2014, 48(4): 671-678.
[13] 王彤, 谢旭, 王渊, 史鹏程. 桁腹式组合桁梁结构计算理论[J]. J4, 2014, 48(4): 711-720.
[14] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[15] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.