Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1866-1873    DOI: 10.3785/j.issn.1008-973X.2024.09.011
土木与建筑工程     
消能摇摆钢框架结构地震反应的计算方法
张文津1,2(),李国强2,胡晓华1,张惊宙3,黄博滔4,赵生智1
1. 中建八局 浙江建设有限公司,浙江 杭州 310000
2. 同济大学 土木工程学院,上海 200092
3. 广州大学 土木工程学院,广东 广州 510000
4. 浙江大学 建筑工程学院,浙江 杭州 310058
Calculation method of seismic response for steel frame coupled with rocking structure and dampers
Wenjin ZHANG1,2(),Guoqiang LI2,Xiaohua HU1,Jingzhou ZHANG3,Botao HUANG4,Shengzhi ZHAO1
1. Zhejiang Construction Co. Ltd, China Construction Eighth Engineering Division, Hangzhou 310000, China
2. College of Civil Engineering, Tongji University, Shanghai 200092, China
3. College of Civil Engineering, Guangzhou University, Guangzhou 510000, China
4. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1568 KB)   HTML
摘要:

消能摇摆钢框架结构(SRF)通过摇摆钢桁架抑制各楼层发生不均匀地震变形,通过位于转动底脚的阻尼器消耗地震输入能量,抗震性能良好. 推导消能摇摆钢框架结构的弹性计算方法,提出SRF等效单自由度(SDOF)分析模型,基于等效线性化原理给出SRF非线性地震反应的计算方法. 采用ATC-63推荐的地震动记录集进行结构弹塑性地震反应分析,得到SRF在3类地震动激励下的延性需求谱. 研究表明,由弹性计算方法可以得到SRF在水平作用下的力学反应,等效单自由度分析模型能准确描述整体结构的受力机理和非线性地震反应,依此推导所得的SRF地震反应计算方法可用于预估实际结构的地震反应. 相比于普通钢框架结构,SRF屈服后刚度比的取值范围更大,计算所得的延性需求谱与之匹配,可作为设计参考.

关键词: 摇摆结构阻尼器地震反应等效单自由度模型延性需求谱    
Abstract:

Steel frame coupled with rocking structure and dampers (SRF) achieves superior seismic behavior under earthquake excitation, with nonuniform inter-story drift restrained by rocking truss structure and inputting-energy dissipated by dampers located around rotational point. The elastic calculation method of SRF was deduced. The equivalent model of single degree of freedom (SDOF) was established for SRF and the evaluation method of nonlinear seismic response for SRF was promoted by equivalent linearization method. Meanwhile, the ductility demand spectra under three types of earthquake records recommended by ATC-63 was developed based on time-history dynamic analysis results. Results show that the elastic calculation method can be used to calculate the structural response of SRF under lateral loads. Structural mechanism and nonlinear seismic response under earthquake excitation can be accurately evaluated by the equivalent model of SDOF and the seismic response of actual structure can be predicted by the deduced seismic response calculation method of SRF. Ductility demand spectra for SRF obtained by SDOF is appropriate to the fact that post-yield ratio of SRF is greater than that of the steel-frame structures, which can be referred in the practical design.

Key words: rocking structure    damper    seismic response    equivalent model of single degree of freedom    ductility demand spectra
收稿日期: 2023-07-18 出版日期: 2024-08-30
CLC:  TU 4  
基金资助: 国家十四五重点研发计划资助项目(2022YFC3801900).
作者简介: 张文津(1993—),男,工程师,博士,从事建筑结构抗震与施工分析研究. orcid.org/0009-0001-0029-3822. E-mail:1150744@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张文津
李国强
胡晓华
张惊宙
黄博滔
赵生智

引用本文:

张文津,李国强,胡晓华,张惊宙,黄博滔,赵生智. 消能摇摆钢框架结构地震反应的计算方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1866-1873.

Wenjin ZHANG,Guoqiang LI,Xiaohua HU,Jingzhou ZHANG,Botao HUANG,Shengzhi ZHAO. Calculation method of seismic response for steel frame coupled with rocking structure and dampers. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1866-1873.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.011        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1866

图 1  消能摇摆钢框架结构示意图
图 2  SRF的简化分析模型
图 3  SRF等效单自由度分析模型
图 4  SRF等效SDOF的弹塑性刚度特性
参数数值参数数值
kf /(kN·m?1)2124.6kbrc /(kN·m?1)44506.2
Dy2 /m0.1080Dy1 /m0.0063
Ff /kN229.5Fbrc /kN280.4
αbrc0.008αf0.055
meq /t271.7
表 1  SDOF基础计算参数
图 5  SRF与SDOF弹塑性地震反应的比较
图 6  SDOF等效“双折线”弹塑性刚度模型
图 7  SRF的延性需求谱
1 张文津. 基于消能摇摆减震机制的建筑钢结构体系与设计方法研究[D]. 上海: 同济大学, 2021.
ZHANG Wenjin. Study on structural system and design of steel buildings based on rocking and damping mechanism structures and dampers [D]. Shanghai: Tongji University, 2021.
2 HOUSNER G The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53 (2): 403- 417
doi: 10.1785/BSSA0530020403
3 MEEK J Dynamic response of tipping core buildings[J]. Earthquake Engineering and Structural Dynamics, 1978, 15 (6): 437- 454
4 MANDER J, CHENG C. Seismic resistance of bridge piers based on damage avoidance design [R]. New Zealand: Technical Report NCEER, 1997.
5 NIGEL PRIESTLEY M, TAO J Seismic response of precast prestressed concrete frames with partially debonded tendons[J]. PCI Journal, 1993, 38 (1): 58- 69
doi: 10.15554/pcij.01011993.58.69
6 MACRAE G, KIMURA Y, ROEDER C Effect of column stiffness on braced frame seismic behavior[J]. Journal of Structural Engineering, 2004, 130 (3): 381- 391
doi: 10.1061/(ASCE)0733-9445(2004)130:3(381)
7 ROH H, REINHORN A Modeling and seismic response of structures with concrete rocking columns and viscous dampers[J]. Engineering Structures, 2010, 32 (8): 2096- 2107
doi: 10.1016/j.engstruct.2010.03.013
8 EATHERTON M, MA X, KRAWINKLER H, et al Design concepts for controlled rocking of self-centering steel-braced frames[J]. Journal of Structural Engineering, 2014, 140 (11): 04014082
doi: 10.1061/(ASCE)ST.1943-541X.0001047
9 DEIERLEIN G, KRAWINKLER H, MA X, et al Earthquake resilient steel braced frames with controlled rocking and energy dissipating fuses[J]. Steel Construction, 2011, 4 (3): 171- 175
doi: 10.1002/stco.201110023
10 EATHERTON M, FAHNESTOCK L, MILLER D Computational study of self-centering buckling restrained braced frame seismic performance[J]. Earthquake Engineering and Structural Dynamics, 2015, 43 (13): 1897- 1914
11 曲哲. 摇摆墙-框架结构抗震损伤机制控制及设计方法研究[D]. 北京: 清华大学, 2010.
QU Zhe. Study on seismic damage mechanism control and design of rocking wall-frame structures [D]. Beijing: Tsinghua University, 2010.
12 杨树标, 余丁浩, 贾剑辉, 等 框架-摇摆墙结构简化计算方法研究[J]. 工程抗震与加固改造, 2014, 36 (2): 94- 106
YANG Shubiao, YU Dinghao, JIA Jianhui, et al Simplified calculation method of frame rocking-wall structure system[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36 (2): 94- 106
doi: 10.3969/j.issn.1002-8412.2014.02.015
13 PAN P, WU S, NIE X A distributed parameter model of a frame pin-supported wall structure[J]. Earthquake Engineering and Structural Dynamics, 2015, 44 (10): 1643- 1659
doi: 10.1002/eqe.2550
14 WIEBE L, CHRISTOPOULOS C Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections[J]. Journal of Earthquake Engineering, 2009, 13 (suppl.1): 83- 108
15 WIEBE L, CHRISTOPOULOS C, TREMBLAY R, et al Mechanisms to limit higher mode effects in a controlled rocking steel frame. 1: concept, modelling, and low-amplitude shake table testing[J]. Earthquake Engineering and Structural Dynamics, 2013, 42 (7): 1053- 1068
doi: 10.1002/eqe.2259
16 包世华, 张铜生. 高层建筑结构设计和计算[M]. 北京: 清华大学出版社, 2006: 102−104.
17 FEMA. Quantification of building seismic performance factor: FEMA P695 [R]. Washington, DC: Federal Emergence Management Agency, 2009.
18 周定松, 吕西林 延性需求谱在基于性能的抗震设计中的应用[J]. 地震工程与工程振动, 2004, 24 (1): 30- 38
ZHOU Dingsong, LV Xilin Application of ductility demand spectra in performance-based seismic design[J]. Earthquake Engineering and Engineering Dynamics, 2004, 24 (1): 30- 38
doi: 10.3969/j.issn.1000-1301.2004.01.005
19 张文津. 自复位消能摇摆墙-框架结构减震性能研究[D]. 上海: 同济大学, 2017.
ZHANG Wenjin. Study on seismic behavior of self-centering frame with dampers and rocking wall [D]. Shanghai: Tongji University, 2017.
[1] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[2] 肖红梅,朱立猛,张春巍. 剪力墙竖向连接软钢阻尼器滞回性能试验研究[J]. 浙江大学学报(工学版), 2023, 57(1): 122-132.
[3] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[4] 王威,宋鸿来,权超超,李昱,甄国凯,赵昊田. 横波钢板混凝土剪力墙震损修复及抗侧刚度分析[J]. 浙江大学学报(工学版), 2021, 55(9): 1694-1704.
[5] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[6] 张孝良,耿灿,聂佳梅,高乔. 液力忆惯容器装置建模与特性试验[J]. 浙江大学学报(工学版), 2021, 55(3): 430-440.
[7] 曲扬,罗永峰,朱钊辰,黄青隆. 网壳结构地震反应分析的振型刚度法[J]. 浙江大学学报(工学版), 2020, 54(6): 1068-1077.
[8] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[9] 刘帅,潘超,周志光. 耗能联肢墙体系的减震性能及参数影响[J]. 浙江大学学报(工学版), 2019, 53(3): 492-502.
[10] 赵人达, 贾毅, 占玉林, 王永宝, 廖平, 李福海, 庞立果. 强震区多跨长联连续梁桥减隔震设计[J]. 浙江大学学报(工学版), 2018, 52(5): 886-895.
[11] 雷燕云, 谢旭. 修正的Giuffre-Menegotto-Pinto钢筋滞回本构模型[J]. 浙江大学学报(工学版), 2018, 52(10): 1926-1934.
[12] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[13] 李林, 顾临怡, 罗高生. 基于圆盘缝隙阻尼器的中心通流静压推力轴承[J]. 浙江大学学报(工学版), 2015, 49(2): 282-286.
[14] 郭增伟,葛耀君,卢安平. 竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J]. J4, 2012, 46(1): 8-13.
[15] 祝长生. 转子系统磁控挤压油膜阻尼器[J]. J4, 2007, 41(9): 1561-1566.