Please wait a minute...
J4  2012, Vol. 46 Issue (1): 8-13    DOI: 10.3785/j.issn.1008-973X.2012.01.02
土木工程     
竖弯涡振控制的调谐质量阻尼器TMD参数优化设计
郭增伟,葛耀君,卢安平
同济大学 土木工程防灾国家重点实验室,上海 200092
Parameter optimization of TMD for vortex-induced vibration control
GUO Zeng-wei, GE Yao-jun, LU An-ping
State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF  HTML
摘要:

针对传统调谐质量阻尼器(TMD)的参数优化方法中无法考虑涡激气动力的气动阻尼和气动刚度效应这一问题,通过“类半带宽法”识别线性涡激力模型中相关气动参数,提出考虑涡激力气动阻尼和气动刚度效应的TMD参数优化设计理论模型.以厦漳跨海大桥为工程背景优化设计了用于涡振控制的TMD参数,研究涡激力气动阻尼和气动刚度对TMD最优频率比和阻尼比的影响,并通过风洞试验验证了TMD的涡振控制效果.研究发现,涡激力的气动阻尼和气动刚度效应会对用于涡振控制的TMD最优频率比和阻尼比产生一定的影响,从而影响最终的涡振控制效果.

Abstract:

The aerodynamic damping and aerodynamic stiffness effects in the vortex-induced vibration cannot be considered in the optimizing parameters of tuned mass damper (TMD) based on the traditional theory. Aiming at the problem, the aerodynamic parameters of the linear vortexinduced force model were identified by using the halfpower bandwidth method. A theoretical model for optimizing parameters of TMD considering the aerodynamic damping and aerodynamic stiffness was proposed. Taking the Xiazhang SeaCross Bridge as a numerical example, the influences of the aerodynamic damping and aerodynamic stiffness to the optimal  frequency ratio and damping ratio of TMD were analyzed. The wind tunnel test was also conducted to check out the control effects of TMD. Results show that the aerodynamic damping and aerodynamic stiffness may affect the optimal  frequency ratio and damping ratio  of TMD, subsequently the control effects.

出版日期: 2012-02-22
:  U 441.3  
基金资助:

国家自然科学基金资助项目(90715039,50978203,51021140005)

通讯作者: 葛耀君,男,教授.     E-mail: yaojunge@tongji.edu.cn
作者简介: 郭增伟(1985-),男,博士生,从事桥梁抗风研究.E-mail:guojxhust@yahoo.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郭增伟,葛耀君,卢安平. 竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J]. J4, 2012, 46(1): 8-13.

GUO Zeng-wei, GE Yao-jun, LU An-ping. Parameter optimization of TMD for vortex-induced vibration control. J4, 2012, 46(1): 8-13.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.01.02        http://www.zjujournals.com/eng/CN/Y2012/V46/I1/8

[1] LARSEN A, ESDAHL S, ANDERSEN J, et al. Storebalt suspension bridge vortex shedding excitation and mitigation by guide vanes [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2/3): 283-296.
[2] FUJINO Y, YOSHIDA Y. Windinduced vibration and control of TransTokyo Bay Crossing Bridge [J]. Journal of Structure Engineering, 2002, 128(8): 1012-1025.
[3] LARSEN A, SAVAGE M, LAFRENIRE A, et al. Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 934-944.
[4] SARWAR M, ISHIHARA T. Numerical study on suppression of vortexinduced vibrations of box girder bridge section by aerodynamic countermeasures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 701-711.
[5] ElGAMMAL M, HANGAN H, KING P. Control of vortex sheddinginduced effects in a sectional bridge model by spanwise perturbation method [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8): 663-678.
[6] BATTISTA R, PFEIL M. Control of wind oscillations of RioNiterói bridge, Brazil [J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2010, 163(2): 87-96.
[7] LARSEN A. A generalized model for assessment of vortexinduced vibrations of flexible structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2/3): 281-294.
[8] EHSAN F, SCANLAN R. Vortexinduced vibrations of flexible bridges [J]. Journal of Engineering Mechanics, 1990, 116(6): 1392-1411.
[9] SIMIU E, SCANLAN R. Wind effects on structures: fundamentals and applications to design [M]. 2nd ed. New York: Wiley, 1992:151-172.
[10] DIANA G, RESTA F, BELLOLI M, et al. On the vortex shedding forcing on suspension bridge deck [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5): 341-363.
[11] 朱乐东. 桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J].工程力学, 2005,22(5): 204-208.
ZHU Ledong. Mass simulation and amplitude conversion of bridge sectional model test for vortexinduced resonance [J]. Journal of Engineering Mechanics, 2005, 22(5): 204-208.

No related articles found!