Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1407-1418    DOI: 10.3785/j.issn.1008-973X.2021.08.001
土木工程、交通工程     
墙趾可更换竖波钢板剪力墙抗剪承载力
王威(),赵昊田,权超超,宋鸿来,李昱,周毅香
西安建筑科技大学 土木工程学院,陕西 西安 710055
Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe
Wei WANG(),Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU
School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
 全文: PDF(1936 KB)   HTML
摘要:

针对钢板剪力墙在地震作用下墙趾容易出现应力集中,导致剪力墙局部屈曲和脆性破坏的问题,设计墙趾可更换竖波钢板剪力墙,即在剪力墙墙趾塑性区安装耗能阻尼器. 通过拟静力试验将墙趾可更换竖波钢板剪力墙与传统竖波钢板剪力墙的抗震性能进行对比. 研究墙趾可更换竖波钢板剪力墙的破坏模式、滞回性能、延性和耗能能力、强度和刚度退化以及墙趾阻尼器的可更换性. 试验结果表明:与传统竖波钢板剪力墙相比,墙趾阻尼器的安装不仅可以显著提升墙趾可更换竖波钢板剪力墙的抗侧刚度,也能进一步加强其抵抗面外失稳的能力. 利用ABAQUS有限元软件详细讨论墙趾可更换竖波钢板剪力墙波形钢板厚度、波角、阻尼器腹板厚度对抗剪承载力的影响,并给出墙趾可更换竖波钢板剪力墙的抗剪承载力计算公式.

关键词: 竖波钢板剪力墙耗能阻尼器拟静力试验有限元分析抗剪承载力公式    
Abstract:

The toe of steel plate shear wall structure was prone to stress concentration, resulting in local buckling and brittle failure under earthquake. A new type of vertical corrugated steel plate shear wall with replaceable toe was proposed. The seismic performance of vertical corrugated steel plate shear wall with replaceable toe was compared with that of traditional vertical corrugated steel plate shear wall through quasi-static test. The failure mode, the hysteretic behavior, the ductility and energy dissipation capacity, the strength and stiffness degradation and the replaceability of replaceable toe dampers of vertical corrugated steel plate shear wall with replaceable toe were studied. Test results showed that, compared with the traditional vertical corrugated steel plate shear wall, the installation of dampers can not only significantly improve the lateral stiffness of the vertical corrugated steel plate shear wall with replaceable toe, but also further enhance its ability to resist out-of-plane instability. The influence of thickness of corrugated steel plate, corrugated angle and thickness of damper web on shear capacity of vertical corrugated steel plate shear wall with replaceable toe was discussed in detail by using ABAQUS finite element software, and the shear capacity formula of vertical corrugated steel plate shear wall with replaceable toe was given.

Key words: vertical corrugated steel plate shear wall    energy dissipation damper    quasi-static testing    finite element analysis    formula of shear bearing capacity
收稿日期: 2021-03-12 出版日期: 2021-09-01
CLC:  TU 391  
基金资助: 国家自然科学基金资助项目(51578449,51878548);陕西省自然科学基础研究计划重点资助项目(2018JZ5013)
作者简介: 王威(1972—),男,教授,博士,从事高层结构抗震设计研究. orcid.org/0000-0002-6989-6234. E-mail: wangwgh1972@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王威
赵昊田
权超超
宋鸿来
李昱
周毅香

引用本文:

王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.

Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.001        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1407

图 1  CSPSW的具体构造及几何尺寸图
图 2  RCSPSW的具体构造及几何尺寸图
图 3  墙趾阻尼器具体构造及几何尺寸
图 4  阻尼器工作机理
ts/mm E/(105 MPa) fy/MPa fu/MPa
3 2.06 292.51 405.13
6 2.21 285.61 400.65
10 2.09 287.37 395.77
表 1  钢材试件的材料性能
图 5  剪力墙试件加载装置
图 6  CSPSW破坏阶段变形现象
图 7  加载过程中RCSPSW变形现象
图 8  CSPSW和RCSPSW荷载-位移滞回曲线
图 9  CSPSW和RCSPSW荷载-位移骨架曲线对比
试件 加载方向 Fy/kN Δy/mm Fu/kN Δu/mm Fd/kN Δd/mm λ Δd/Δy
CSPSW 351.8 25.19 365.70 28.51 290.10 34.73 1/61 1.378
?373.1 ?31.15 ?393.30 ?28.51 ?320.60 ?38.01 1/55 1.221
平均 362.4 28.17 379.50 28.51 305.30 36.37 1/58 1.299
RCSPSW
更换前
350.1 12.86 405.60 23.71 ? ? ? ?
?346.3 ?14.11 ?395.33 ?23.71 ? ? ? ?
平均 348.1 13.48 400.40 23.71 ? ? ? ?
RCSPSW
更换后
332.1 10.26 370.10 14.06 299.70 27.72 1/77 2.711
?275.7 ?11.23 ?317.20 ?14.05 ?233.30 ?29.37 1/72 2.316
平均 303.9 10.75 343.60 14.06 266.50 28.55 1/75 2.508
表 2  试件特征点及位移延性系数
图 10  等效黏性阻尼系数计算
图 11  等效黏滞阻尼系数-滞回圈数曲线
图 12  CSPSW和RCSPSW刚度退化曲线对比
图 13  CSPSW和RCSPSW强度退化曲线对比
图 14  RCSPSW有限元模型
图 15  有限元计算结果和试验结果对比
类型 屈服点 峰值点 极限点
Fy/kN Δy/mm Fu/kN Δu/mm Fd/kN Δd/mm
模拟值 368.30 8.10 406.50 13.82 318.60 28.88
试验值 332.10 10.26 370.10 14.06 299.70 27.72
模拟值/试验值 1.11 0.79 1.09 0.98 1.06 1.04
表 3  试验与模拟特征点对比
模型编号 θc/(°) t/mm tc/mm
M45-3-6 45 3 6
M45-4-6 45 4 6
M45-5-6 45 5 6
M45-6-6 45 6 6
M45-7-6 45 7 6
M30-3-6 30 3 6
M60-3-6 60 3 6
M90-3-6 90 3 6
M45-3-3 45 3 3
M45-3-4 45 3 4
M45-3-5 45 3 5
M45-3-7 45 3 7
表 4  RCSPSW有限元模型参数
图 16  波形钢板几何参数
图 17  内嵌竖向波形钢板波角的影响
图 18  内嵌竖向波形钢板应力云图
图 19  内嵌竖向波形钢板厚度的影响
图 20  阻尼器腹板厚度的影响
模型编号 Fu Fuf Fu/Fuf
M45-3-6 406.5 410.6 0.99
M45-4-6 544.4 533.7 1.02
M45-5-6 631.9 620.7 1.02
M45-6-6 697.1 689.1 1.01
M45-7-6 745.2 755.8 0.98
M30-3-6 337.2 337.8 0.99
M60-3-6 436.2 399.6 1.09
M90-3-6 425.4 380.7 1.11
M45-3-3 350.5 345.7 1.01
M45-3-4 375.8 375.9 1.00
M45-3-5 401.2 385.6 1.04
M45-3-7 451.9 434.0 1.04
M45-3-7 451.9 434.0 1.04
表 5  RCSPSW抗剪承载力模拟值与计算值的对比
1 王威, 张龙旭, 苏三庆, 等 波形钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39 (5): 36- 44
WANG Wei, ZHANG Long-xu, SU San-qing, et al Experimental research on seismic behavior of corrugated steel plate shear wall[J]. Journal of Building Structures, 2018, 39 (5): 36- 44
2 SHON S, YOO M, LEE S An experimental study on the shear hysteresis and energy dissipation of the steel frame with a trapezoidal-corrugated steel plate[J]. Materials, 2017, 10 (3): 261
doi: 10.3390/ma10030261
3 赵秋红, 邱静, 李楠, 等 梯形波纹钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39 (Suppl.2): 112- 120
ZHAO Qiu-hong, QIU Jing, LI Nan, et al Experimental study on seismic performance of trapezoidally corrugated steel plate shear walls[J]. Journal of Building Structures, 2018, 39 (Suppl.2): 112- 120
4 EMAMI F, MOFID M, VAFAI A Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls[J]. Engineering Structures, 2013, 48: 750- 762
doi: 10.1016/j.engstruct.2012.11.028
5 谭平, 魏瑶, 李洋, 等 波纹钢板剪力墙抗震性能试验研究[J]. 土木工程学报, 2018, 51 (5): 8- 15
TAN Ping, WEI Yao, LI Yang, et al Experimental investigation on performance of corrugated steel plate shear wall[J]. China Civil Engineering Journal, 2018, 51 (5): 8- 15
6 QIU J, ZHAO Q H, YU C, et al Experimental studies on cyclic behavior of corrugated steel plate shear walls[J]. Journal of Structural Engineering, 2018, 144 (11): 04018200
doi: 10.1061/(ASCE)ST.1943-541X.0002165
7 SUN G, HE R, QIANG G, et al Cyclic behavior of partially-restrained steel frame with RC infill walls[J]. Journal of Constructional Steel Research, 2011, 67 (12): 1821- 1834
doi: 10.1016/j.jcsr.2011.06.002
8 翟长海, 刘文, 谢礼立 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39 (9): 1- 9
ZHAI Chang-hai, LIU Wen, XIE Li-li Progress of research on city seismic resilience evaluation[J]. Journal of Building Structures, 2018, 39 (9): 1- 9
9 LIU Y, GUO Z, LIU X J, et al An innovative resilient rocking column with replaceable steel slit dampers: experimental program on seismic performance[J]. Engineering Structures, 2019, 183: 830- 840
doi: 10.1016/j.engstruct.2019.01.059
10 LIN C H, TSAI K C, QU B, et al Sub-structural pseudo-dynamic performance of two full-scale two-story steel plate shear walls[J]. Journal of Constructional Steel Research, 2010, 66 (12): 1467- 1482
doi: 10.1016/j.jcsr.2010.05.013
11 QU B, BRUNEAU M, LIN C H, et al Testing of full-scale two-story steel plate shear wall with reduced beam section connections and composite floors[J]. Journal of Structural Engineering, 2008, 134 (3): 364- 373
doi: 10.1061/(ASCE)0733-9445(2008)134:3(364)
12 CORTES G, LIU J Experimental evaluation of steel slit panel-frames for seismic resistance[J]. Journal of Constructional Steel Research, 2011, 67 (2): 181- 191
doi: 10.1016/j.jcsr.2010.08.002
13 OZAKI F, KAWAI Y, KANNO R, et al Damage-control systems using replaceable energy-dissipating steel fuses for cold-formed steel structures: seismic behavior by shake table tests[J]. Journal of Structural Engineering, 2013, 139 (5): 787- 795
doi: 10.1061/(ASCE)ST.1943-541X.0000638
14 郭彦林. 波形腹板钢结构设计原理与应用[M]. 北京: 科学出版社, 2015.
15 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.
16 中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015 [S]. 北京: 中国建筑工业出版社, 2015.
17 王威, 韩斌, 王万志, 等 带可更换阻尼器的波形钢板剪力墙抗震性能试验研究[J]. 中南大学学报, 2020, 51 (5): 1350- 1360
WANG Wei, HAN Bin, WANG Wan-zhi, et al Experimental study of seismic performance of corrugated steel plate shear wall with replaceable damper[J]. Journal of Central South University, 2020, 51 (5): 1350- 1360
18 国家市场监督管理总局, 中国国家标准化管理委员会. 钢及钢产品力学性能试验取样位置及式样制备: GB/T 2975—2018 [S]. 北京: 中国标准出版社, 2018.
19 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2016.
20 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2016.
21 张淑云, 李卓宇, 马尤苏夫, 等 基于IDA的方钢管混凝土框架-SPSW核心筒结构地震易损性研究[J]. 世界地震工程, 2021, 37 (1): 48- 56
ZHANG Shu-yun, LI Zhuo-yu, MA Yousufu, et al Research on seismic vulnerability of concrete-filled rectangular tubular frame-SPSW core tube structure based on IDA method[J]. World Earthquake Engineering, 2021, 37 (1): 48- 56
22 王萌, 石永久, 王元清 考虑累积损伤退化的钢材等效本构模型研究[J]. 建筑结构学报, 2013, 34 (10): 73- 83
WANG Meng, SHI Yong-jiu, WANG Yuan-qing Study on equivalent constitutive model of steel with cumulative degradation and damage[J]. Journal of Building Structures, 2013, 34 (10): 73- 83
23 HASSANEIN M F, KHAROOB O F Shear buckling behavior of tapered bridge girders with steel corrugated webs[J]. Engineering Structures, 2014, 74: 157- 169
doi: 10.1016/j.engstruct.2014.05.021
24 GALAMBOS T V. Guide to stability design criteria for metal structures[M]. Hoboken: John Wiley & Sons, 1998.
25 朱力, 蔡建军, 聂建国 波形钢腹板的弹性剪切屈曲强度[J]. 工程力学, 2013, 30 (7): 40- 46
ZHU Li, CAI Jian-jun, NIE Jian-guo Elastic shear buckling strength of trapezoidal corrugated steel webs[J]. Engineering Mechanics, 2013, 30 (7): 40- 46
doi: 10.6052/j.issn.1000-4750.2012.02.0081
26 聂建国, 朱力, 唐亮 波形钢腹板的抗剪强度[J]. 土木工程学报, 2013, 46 (6): 97- 109
NIE Jian-guo, ZHU Li, TANG Liang Shear strength of trapezoidal corrugated steel webs[J]. China Civil Engineering Journal, 2013, 46 (6): 97- 109
[1] 王洁,李钊,李子然. 全钢载重子午线轮胎胎面磨耗行为研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1615-1624.
[2] 李通,王新武,时强,布欣,孙海粟. 可替换式偏心支撑钢框架抗震性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1725-1733.
[3] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[4] 黄铭枫,魏歆蕊,叶何凯,叶建云,楼文娟. 大跨越钢管塔双平臂抱杆的风致响应[J]. 浙江大学学报(工学版), 2021, 55(7): 1351-1360.
[5] 蒋君侠,廖海鹏. 重载智能堆垛装备刚度建模与结构优化[J]. 浙江大学学报(工学版), 2021, 55(10): 1948-1959.
[6] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[7] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[8] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[9] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[10] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[11] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[12] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[13] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[14] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[15] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.