Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1341-1346    DOI: 10.3785/j.issn.1008-973X.2020.07.012
机械与能源工程     
变刚度多稳态复合材料结构设计与性能分析
张征1(),张豪1,柴灏2,吴化平1,姜少飞1
1. 浙江工业大学 机械工程学院,浙江 杭州 310014
2. 浙江工业大学之江学院 机械工程学院,浙江 绍兴 312030
Design and performance analysis of variable stiffness multi-stable composite laminate structure
Zheng ZHANG1(),Hao ZHANG1,Hao CHAI2,Hua-ping WU1,Shao-fei JIANG1
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. College of Mechanical Engineering, Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China
 全文: PDF(972 KB)   HTML
摘要:

通过研究复合材料层合板结构局部纤维角变化的理论模型与刚度变化的关系,设计2种变刚度多稳态复合材料层合板结构. 对变刚度多稳态复合材料结构进行建模,运用Matlab求出不同的平衡方程解,得到变刚度多稳态复合材料结构的稳态构型. 制备相应的实验试件,测量变刚度多稳态复合材料结构不同稳态转变时的力学性能,通过有限元软件Abaqus模拟变刚度多稳态复合材料结构的降温冷却过程,得到平衡稳定状态的数值解. 结合理论、数值与试验,分析变刚度多稳态复合材料结构的稳态构型、稳态转变最大载荷及载荷-位移曲线的变化规律.

关键词: 变刚度多稳态复合材料经典层合板理论有限元分析    
Abstract:

Two variable stiffness multi-stable composite laminate structures were designed by analyzing the relationship between the theoretical model of regional fiber angle change and the stiffness change of composite structures. The variable stiffness multi-stable composite structure was modeled, and the stable configuration of the multi-stable composite structures with variable stiffness was obtained by solving different equilibrium equations with Matlab. The experimental specimens were prepared to measure the mechanical properties with different stable transformation. The cooling process were simulated by finite element software Abaqus, and the numerical results of equilibrium stable configuration were obtained. The stable configuration, the stable transformation maximum load and the load-displacement curvatures were analyzed by combining with the theoretical, numerical and experimental results.

Key words: variable stiffness    multi-stable composite structure    classical laminate theory    finite element analysis
收稿日期: 2019-03-09 出版日期: 2020-07-05
CLC:  TB 332  
基金资助: 国家自然科学基金资助项目(51675485,51775510);浙江省杰出青年基金资助项目(LR18E050002);浙江省基金资助项目(LY20E050020)
作者简介: 张征(1979—),教授,博导,从事智能复合材料结构的研究. orcid.org/0000-0002-1398-7727. E-mail: zzhangme@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张征
张豪
柴灏
吴化平
姜少飞

引用本文:

张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.

Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.012        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1341

参数 数值
E11/GPa 186
E22/GPa 88
v12 0.3
G12/GPa 7.1
ɑ11/(10?6°C?1 0.345
ɑ22/(10?6°C?1 15.3
表 1  单层板的材料参数[18]
图 1  变刚度多稳态复合材料结构纤维方向示意图
图 2  恒温恒压热压机
图 3  试件1稳态示意图
图 4  试件2稳态示意图
图 5  稳态转变实验
图 6  压头与夹具
图 7  2种试件的稳态转变载荷-位移曲线
图 8  试件1第2稳态构型理论结果与有限元数值解的对比
图 9  试件1两个稳态构型有限元与实验试件对比
图 10  试件2两个稳态构型有限元与实验试件对比
图 11  试件2载荷-位移实验与有限元模拟对比
1 KUDER I K, ARRIETA A F, RIST M, et al Aeroelastic response of a selectively compliant morphing aerofoil featuring integrated variable stiffness bi-stable laminates[J]. Journal of Intelligent Material Systems and Structures, 2016, 27 (14): 1949- 1966
doi: 10.1177/1045389X15620038
2 SOUSA C S, CAMANHO P P, SULEMAN A Analysis of multistable variable stiffness composite plates[J]. Composite Structures, 2013, 98 (3): 34- 46
3 WALDHART C. Analysis of tow-placed, variable-stiffness laminates [D]. Virginia: Virginia Tech, 1996.
4 GURDAL Z, OLMEDO R In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept[J]. American Institute of Aeronautics and Astronautics Journal, 1993, 31 (4): 751- 758
doi: 10.2514/3.11613
5 GURDAL Z, TATTING B F, WU C K Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39 (5): 911- 922
doi: 10.1016/j.compositesa.2007.11.015
6 BLOM A W, STICKLER P B, GURDAL Z Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B: Engineering, 2010, 41 (2): 157- 165
doi: 10.1016/j.compositesb.2009.10.004
7 邵忠喜. 纤维铺放装置及其铺放关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
SHAO Zhong-xi. Research on fiber laying device and its key technologies [D]. Harbin: Harbin University of Technology, 2010.
8 LE H M, CAO L, DO T N, et al Design and modelling of a variable stiffness manipulator for surgical robots[J]. Mechatronics, 2018, 53: 109- 123
doi: 10.1016/j.mechatronics.2018.05.012
9 PEETERS D M J, HESSE S, ABDALLA M M Stacking sequence optimization of variable stiffness laminates with manufacturing constraints[J]. Composite Structures, 2015, 125: 596- 604
doi: 10.1016/j.compstruct.2015.02.044
10 NIK M A, FAYAZBAKHSH K, PASINI D, et al Optimization of variable stiffness composites with embedded defects induced by automated fiber placement[J]. Composite Structures, 2014, 107: 160- 166
doi: 10.1016/j.compstruct.2013.07.059
11 KUDER I K, ARRIETA A F, ERMANNI P Design space of embeddable variable stiffness bi-stable elements for morphing applications[J]. Composite Structures, 2015, 122: 445- 455
doi: 10.1016/j.compstruct.2014.11.061
12 KHANI A, IJSSELMUIDEN S T, ABDALLA M M, et al Design of variable stiffness panels for maximum strength using lamination parameters[J]. Composites Part B: Engineering, 2011, 42 (3): 546- 552
doi: 10.1016/j.compositesb.2010.11.005
13 孔斌, 顾杰斐, 陈普会, 等 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34 (10): 2121- 2133
KONG Bin, GU Jie-fei, CHEN Pu-hui, et al Design, manufacture and analysis of variable stiffness composite structures[J]. Journal of Composite Materials, 2017, 34 (10): 2121- 2133
14 DURAN A V, FASANELLA N A, SUNDARARAGHAVAN V, et al Thermal buckling of composite plates with spatial varying fiber orientations[J]. Composite Structures, 2015, 124: 228- 235
doi: 10.1016/j.compstruct.2014.12.065
15 RAHMAN T, IJSSELMUIDEN S T, ABDALLA M M, et al Postbuckling analysis of variable stiffness composite plates using a finite element-based perturbation method[J]. International Journal of Structural Stability and Dynamics, 2011, 11 (4): 735- 753
doi: 10.1142/S0219455411004324
16 ARRIETA A F, KUDER I K, RIST M, et al Passive load alleviation aerofoil concept with variable stiffness multi-stable composites[J]. Composite Structures, 2014, 116: 235- 242
doi: 10.1016/j.compstruct.2014.05.016
17 COBURN B H, WU Z, WEAVER P M Buckling analysis of stiffened variable angle tow panels[J]. Composite Structures, 2014, 111 (11): 259- 270
18 XIONG C, LEI Y, YAO X Dynamic experimental study of deployable composite structure[J]. Applied Composite Materials, 2011, 18 (5): 439- 448
doi: 10.1007/s10443-010-9174-7
19 ZHANG Z, WU H, YE G, et al Experimental study on bistable behaviour of anti-symmetric laminated cylindrical shells in thermal environments[J]. Composite Structures, 2016, 144: 24- 32
doi: 10.1016/j.compstruct.2016.02.062
20 ZHANG Z, WU H, YE G, et al Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells[J]. Composite Structures, 2014, 112: 368- 377
doi: 10.1016/j.compstruct.2014.02.030
21 LEI Y M, YAO X F Experimental study of bistable behaviors of deployable composite structure[J]. Journal of Reinforced Plastics and Composites, 2010, 29 (6): 865- 873
doi: 10.1177/0731684408100738
22 刘东新, 刘伟. 复合材料力学基础[M]. 西安: 西北工业大学出版社, 2010.
23 SCHLECHT M, SCHULTE K Advanced calculation of the room-temperature shapes of unsymmetric laminates[J]. Journal of Composite Materials, 1999, 33 (16): 1472- 1490
doi: 10.1177/002199839903301601
24 ARRIETA A F, KUDER I K, WAEBER T, et al Variable stiffness characteristics of embeddable multi-stable composites[J]. Composites Science and Technology, 2014, 97: 12- 18
doi: 10.1016/j.compscitech.2014.03.017
25 HALDAR A, REINOSO J, JANSEN E, et al Thermally induced multistable configurations of variable stiffness composite plates: Semi-analytical and finite element investigation[J]. Composite Structures, 2018, 183: 161- 175
doi: 10.1016/j.compstruct.2017.02.014
[1] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[2] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[3] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[4] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[5] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[6] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[7] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[8] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.
[9] 夏永强, 肖南. T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报(工学版), 2018, 52(10): 1935-1942.
[10] 王幸, 徐武, 张晓晶, 张丽娜, 胡本润. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1610-1618.
[11] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[12] 江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 2017, 51(4): 825-833.
[13] 陈伟刚,邓华, 白光波, 董石麟, 朱忠义. 平板型铝合金格栅结构支座节点的承载性能[J]. 浙江大学学报(工学版), 2016, 50(5): 831-840.
[14] 毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 2016, 50(1): 102-110.
[15] 王佼姣, 石永久, 王元清, 潘鹏, 牧野俊雄, 齐雪. 低屈服点钢材LYP100循环加载试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1401-1409.