Please wait a minute...
浙江大学学报(工学版)
土木工程、水利工程、交通工程     
低屈服点钢材LYP100循环加载试验
王佼姣1, 石永久1, 王元清1, 潘鹏1, 牧野俊雄2, 齐雪2
1. 清华大学 土木工程安全与耐久教育部重点实验室,北京 100084;2. 日本住金关西工业株式会社,东京事务所,东京 101-0032
Experimental study on low yield point steel LYP100 under cyclic loading
WANG Jiao-jiao, SHI Yong-jiu1, WANG Yuan-qing1, PAN Peng1, MAKINO Toshio2, QI Xue2
1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Beijing 100084, China; 2. Sumikin Kansai Industries Co. Ltd., Tokyo office, 101-0032, Japan
 全文: PDF(3561 KB)   HTML
摘要:
为了准确模拟低屈服点钢材LYP100的弹塑性地震反应,需要对材料的循环本构关系进行研究.采用16种不同加载制度对LYP100的20个试件进行试验,分析单调曲线、滞回曲线、破坏形态、延性特点等.基于Ramberg-Osgood模型对逐级加载下的循环骨架曲线进行拟合.利用试验数据标定LYP100钢材的等向强化和随动强化参数,通过ABAQUS有限元数值模拟进行参数数值的验证.结果表明,LYP100钢材表现出明显的循环硬化特征;LYP100经历过循环荷载加载以后仍具有良好的延性;采用Ramberg-Osgood模型可以较好地模拟LYP100在逐级循环加载下的骨架曲线;标定的强化模型参数,应用到ABAQUS有限元软件中时,计算结果与试验结果接近.
Abstract:
In order to simulate the earthquake response of low yield point steel, its constitutive relationship under cyclic loading needs to be studied. Twenty specimens of low
yield point steel LYP100 were tested under sixteen different loading systems. Monotonic curves, hysteretic curves, failure modes and ductility properties were analyzed. Skeleton curves under cyclic loading with strain increasing step by step were fitted based on Ramberg-Osgood model. And parameters of isotropic hardening and kinematic hardening were calibrated from test data. The calibration was then verified by finite element results simulated in ABAQUS. Results show that, LYP100 steel exhibits a large degree of cyclic hardening; LYP100 has excellent ductility even after being subjected to cyclic loading; Ramberg-Osgood model fits skeleton curves well under cyclic loading with strain increasing step by step; finite element results fit test results well when calibrated hardening parameters are input into ABAQUS.
出版日期: 2015-08-01
:  TU 391  
基金资助:

国家自然科学基金资助项目(51038006)

通讯作者: 石永久,男,教授     E-mail: shiyj@tsinghua.edu.cn
作者简介: 王佼姣(1987—),女,博士生,从事钢结构研究. E-mail: wangjiaojiao922@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王佼姣, 石永久, 王元清, 潘鹏, 牧野俊雄, 齐雪. 低屈服点钢材LYP100循环加载试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.08.001.

WANG Jiao-jiao, SHI Yong-jiu, WANG Yuan-qing, PAN Peng, MAKINO Toshio, QI Xue. Experimental study on low yield point steel LYP100 under cyclic loading. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.08.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.08.001        http://www.zjujournals.com/eng/CN/Y2015/V49/I8/1401

[1] 董永涛,张耀春.建筑用钢循环塑性本构模型[J].哈尔滨建筑工程学院学报,1993, 26(5): 106-112.
DONG Yong-tao, ZHANG Yao-chun. Cyclic plasticity constitutive model of structural steel [J]. Journal of Harbin Architecture and Civil Engineering, 1993, 26(5): 106-112.
[2] NATHANIEL G C, KRAWINKLER H. Unaxial cyclic stress-strain behavior of structural steel [J]. Journal of Engineering Mechanics, 1985, 111(9): 1105-1120.
[3] KRAWINKLER H, ZOHREI M, BAHMAN L I, et al. Recommendations for experimental studies on the seismic behavior of steel components and materials [R]. Stanford, CA:
Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, 1983.
[4] RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters [R]. Technical Note No. 902, Washington DC: National Advisory Committee for Aeronautics, 1943.
[5] SHI Yong-jiu, WANG Meng, WANG Yuan-qing. Experimental and constitutive model study of structural steel under cyclic loading [J]. Journal of Constructional Steel
Research, 2011, 67(8): 1185-1197.
[6] SHI Gang, WANG Meng, BAI Yu, et al. Experimental and modeling study of high-strength structural steel under cyclic loading [J]. Engineering Structures, 2012, 37(4): 113.
[7] 施刚,王飞,戴国欣,等.Q460C高强度结构钢材循环加载试验研究[J].东南大学学报:自然科学版,2011, 41(6): 1259-1265.
SHI Gang, WANG Fei, DAI Guo-xin, et al. Cyclic loading tests on high strength structural steel Q460C [J]. Journal of Southeast University :Natural Science Edition, 2011, 41
(6): 1259-1265.
[8] 施刚,王飞,戴国欣,等.Q460D高强度结构钢材循环加载试验研究[J].土木工程学报,2012,45(7): 48-55.
SHI Gang, WANG Fei, DAI Guo-xin, et al. Experimental study of high strength structural steel Q460D under cyclic loading [J]. China Civil Engineering Journal, 2012, 45(7):
48-55.
[9] 王元清,常婷,石永久.循环荷载下奥氏体不锈钢的本构关系试验研究[J].东南大学学报:自然科学版, 2012, 42(6): 1175-1179.
WANG Yuan-qing, CHANG Ting, SHI Yong-jiu. Experimental study on constitutive relationship in austenitic stainless steel under cyclic loading [J]. Journal of Southeast
University :Natural Science Edition, 2012, 42(6): 1175-1179.
[10] 周建龙,汪大绥,姜文伟,等.防屈曲耗能支撑在世博中心工程中的应用研究[J].建筑结构,2009, 39(5): 29-33.
ZHOU Jian-long, WANG Da-sui, JIANG Wen-wei, et al. Research on application of buckling restrained braces in the EXPO Center [J]. Building Structure, 2009, 39(5): 29-33.
[11] DUSICKA P, ITANI A M, BUCKLE I G. Cyclic response of plate steels under large inelastic strains [J]. Journal of Constructional Steel Research, 2007, 63(2): 156-164.
[12] SAEKI E, SUGISAWA M, YAMAGUCHI T, et al. Mechanical properties of low yield point steels [J]. Journal of Materials in Civil Engineering, 1998, 10(3): 143-152.
[13] 宋凤明,温东辉,李陈,等.极低屈服点钢低周疲劳特性[J].钢铁研究学报, 2010, 22(5): 37-40.
SONG Feng-ming, WEN Dong-hui, LI Chen, et al. Low cycle fatigue characteristic of ultra-low yield point steel [J]. Journal of Iron and Steel Research, 2010, 22(5): 37-40.
[14] 王佼姣,石永久,严红,等.低屈服点全钢防屈曲支撑抗震性能试验研究[J].土木工程学报,2013, 46(10): 916, 25.
WANG Jiao-jiao, SHI Yong-jiu, YAN Hong, et al. Experimental study on the seismic behavior of all-steel buckling-restrained brace with low yield point [J]. China Civil
Engineering Journal, 2013, 46(10): 916, 25.
[15] GB/T 228.1-2010. 金属材料拉伸试验第1部分:室温拉伸方法[S].北京:中国标准出版社, 2011.
GB/T 228.1-2010. Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: China Standard Press, 2011.
[16] CHABOCHE J L. Time-independent constitutive theories for cyclic plasticity [J]. International Journal of Plasticity, 1986, 2(2): 149-188.
[17] NIP K H, GARDNER L, DAVIS CM, et al. Extremely low cycle fatigue tests on structural carbon steel and stainless steel [J]. Journal of Constructional Steel Research,
2010, 66(1): 96-110.
[1] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[2] 相阳, 罗永峰, 廖冰, 沈祖炎. 球面网壳地震动输入与振型响应的相关性[J]. 浙江大学学报(工学版), 2016, 50(6): 1040-1047.
[3] 欧阳丹丹, 付波, 童根树. 矩形钢管截面延性等级和板件宽厚比相关关系[J]. 浙江大学学报(工学版), 2016, 50(2): 271-281.
[4] 童根树,杨章,张磊. 钢板剪力墙单侧加劲肋的有效抗弯刚度[J]. 浙江大学学报(工学版), 2015, 49(11): 2151-2158.
[5] 陆金钰,唐屹,舒赣平,王恒华. 不等高开缝钢板剪力墙滞回性能分析[J]. 浙江大学学报(工学版), 2014, 48(11): 1968-1975.
[6] 杨连枝, 张亮亮, 余莲英, 尚兰歌, 高阳, 王敏中. 悬臂梁固定端不同位移边界条件下解的对比[J]. 浙江大学学报(工学版), 2014, 48(11): 1955-1961.
[7] 程华强,罗尧治,许贤. 自适应张弦梁结构的非线性内力控制[J]. 浙江大学学报(工学版), 2014, 48(7): 1155-1161.
[8] 张磊, 罗桂发, 童根树. 人字撑-钢框架弹塑性抗侧性能的精细化研究[J]. J4, 2013, 47(10): 1815-1823.
[9] 肖南, 王海, 陈华鹏, 张飞林. 大气腐蚀下网架结构症状可靠度及寿命预测[J]. J4, 2013, 47(8): 1373-1378.
[10] 王振宇,张劲帆,方成,刘国华,蒋建群. 半刚性节点初始刚度的组件式计算模型[J]. J4, 2012, 46(11): 1998-2006.
[11] 张磊,童根树. 薄壁构件整体稳定性的有限元模拟[J]. J4, 2011, 45(3): 531-538.
[12] 金阳, 童根树. 考虑翼缘约束的工字形截面腹板的弹性屈曲[J]. J4, 2009, 43(10): 1883-1891.