Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1697-1705    DOI: 10.3785/j.issn.1008-973X.2020.09.005
土木与交通工程     
黏土中地下连续墙支护结构的稳定性分析
楼恺俊1(),俞峰1,*(),夏唐代2,马健3
1. 浙江理工大学 基础结构技术研究所,浙江 杭州310018
2. 浙江大学 滨海岩土研究中心,浙江 杭州310058
3. 上海勘察设计研究院(集团)有限公司浙江分公司,浙江 杭州310020
Stability analysis of diaphragm wall retained structure in clay
Kai-jun LOU1(),Feng YU1,*(),Tang-dai XIA2,Jian MA3
1. Institute of Foundation and Structure Technologies, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Shanghai Geotechnical Investigation, Design and Research Group Zhejiang Branch, Hangzhou 310020, China
 全文: PDF(1054 KB)   HTML
摘要:

以杭州地铁二号线文华路地铁站主体基坑为工程案例,应用PLAXIS 3D数值模拟软件,确定杭州典型黏土地区土体小应变硬化(HSS)模型的土体参数取值方法. 基于可靠度理论及稳定性和经济性评价体系,将抗隆起稳定、抗倾覆稳定、支护结构侧向位移控制这3种安全性模式分别作为单目标,分析单目标下的结构参数敏感性及其最优解;运用灰色关联度多目标优化算法确定地下连续墙支护结构设计参数的最优解. 结果表明,土体小应变硬化模型适用于杭州典型黏土地区:对于该地区狭长型基坑的内撑式地下连续墙支护结构,墙深是基坑抗隆起稳定性的决定因素,墙深和加固土深度对基坑抗倾覆稳定性的重要性相同,被动区加固土深度在坑底以下较差土层内还是基坑变形的主控参数. 当考虑内支撑时,首道支撑对基坑变形控制起决定性作用;由灰色关联度多目标优化算法确定的结构设计参数最优解与实际结果接近.

关键词: 土体小应变硬化(HSS)模型地下连续墙有限元分析灰色关联分析多目标优化算法    
Abstract:

By employing the case history of the main excavation at Wenhualu Station of Hangzhou Metro Line 2, PLAXIS 3D numerical simulation software was applied to determine the value method of soil parameters the soil parameter determination methods involved in hardening soil model with small strain stiffness (HSS model) derived for typical Hangzhou clay. Based on the reliability theory and the evaluation system of stability and economy, three safety modes, including the excavation stabilities against basal heave, overturning, and the lateral deformation control of the retaining structure, were taken as single objectives, respectively. The sensitivity of structural parameters and the optimal solutions under the single objectives were analyzed. The optimal solution of design parameters of diaphragm wall supporting structure was determined by multi-objective optimization algorithm of grey incidence analysis. Results show that HSS model is suitable for the typical clay areas in Hangzhou. As for the internal bracing underground diaphragm wall supporting structure for narrow and long excavation in this area, the wall length is the decisive factor of anti-uplift excavation stability; and the lengths of the wall and the improved soil are equally important to the anti-overturning excavation stability. The passive strengthening zone depth under the bottom soil layer is the main control parameters for excavation deformation. Considering the internal bracing system, the first support is crucial to control the deformation. The optimal solutions of structural design parameters determined by the multi-objective optimization algorithm of grey incidence analysis are close to the actual results.

Key words: hardening soil model with small strain stiffness (HSS model)    diaphragm wall    finite element analysis    grey incidence analysis    multi-objective optimization algorithm
收稿日期: 2020-09-19 出版日期: 2020-09-22
CLC:  TU 473  
基金资助: 浙江省自然科学基金重点资助项目(LZ17E080002);浙江省教育厅科研资助项目(Y201942631)
通讯作者: 俞峰     E-mail: kaijunlou@qq.com;pokfulam@zstu.edu.cn
作者简介: 楼恺俊(1995—),男,硕士生,从事基坑工程研究. orcid.org/0000-0002-2965-4011. E-mail: kaijunlou@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
楼恺俊
俞峰
夏唐代
马健

引用本文:

楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.

Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.005        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1697

图 1  基坑开挖数值模拟算例模型示意图
层号 岩土名称 $\gamma $/ (KN·m?3) Es/MPa c/kPa $\varphi $/(°)
1-1 杂填土 18.5 3.0 15.0 8.0
1-2 素填土 18.0 3.0 10.0 12.0
4-1 淤泥质黏土 17.4 1.4 9.5 12.0
6-3 黏土 17.1 4.0 11.0 12.5
7-2 粉质黏土 19.4 10.0 21.0 20.0
10-1 灰色黏土 18.3 7.5 25.0 13.0
12-3 砾砂 19.6 20.0 4.0 32.0
表 1  文华路站土层物理力学参数
试验
参数
黏土 砂土
$E_{{\rm{oed}}}^{{\rm{ref}}}$ $E_{{\rm{50}}}^{{\rm{ref}}}$ $G_{\rm{0}}^{{\rm{ref}}}$ $E_{{\rm{oed}}}^{{\rm{ref}}}$ $E_{{\rm{50}}}^{{\rm{ref}}}$ $G_{\rm{0}}^{{\rm{ref}}}$
初值 $E_{\rm s} $ ${\rm{1}}{\rm{.2}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{2}}E_{{\rm{ur}}}^{{\rm{ref}}}$ $E_{\rm s} $ ${\rm{0}}{\rm{.8}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{2}}E_{{\rm{ur}}}^{{\rm{ref}}}$
终值 $E_{\rm s} $ ${\rm{1}}{\rm{.32}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{2}}{\rm{.5}}E_{{\rm{ur}}}^{{\rm{ref}}}$ $E_{\rm s} $ ${\rm{0}}{\rm{.84}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{1}}{\rm{.5}}E_{{\rm{ur}}}^{{\rm{ref}}}$
表 2  反分析参数初值与终值对比
图 2  各施工步骤中墙体水平位移实测与模拟值随深度的变化
施工步骤 lm /mm H0m/m ln /mm H0n /m $\Delta $l /% $\Delta $H0 /m
开挖第一层土 14.7 10.5 15.5 9.0 5.4 ?1.5
开挖第二层土 22.1 11.0 25.0 11.5 13.1 0.5
开挖第三层土 37.6 12.5 42.0 15.0 11.7 2.5
开挖第四层土 45.5 13.0 45.0 15.0 ?1.0 2.5
开挖第五层土 50.7 13.0 50.0 16.5 ?1.4 3.5
表 3  墙体水平位移实测与数值结果对比分析
图 3  地表沉降实测与数值结果对比
土体 $\psi /(^\circ)$ $E_{{\rm{oed}}}^{{\rm{ref}}}/{\rm{MPa}}$ $E_{{\rm{50}}}^{{\rm{ref}}}/{\rm{MPa}}$ $E_{{\rm{ur}}}^{{\rm{ref}}}/{\rm{MPa}}$ $G_{\rm{0}}^{{\rm{ref}}}/{\rm{MPa}}$ ${\gamma _{0.7}}/{10^{ - 4}}$ ${\nu _{{\rm{ur}}}}$ $m $ ${R_{\rm{f}}}$
砂土 φ?30 $E_{\rm{s}}^{1 ? 2}$ ${\rm{0}}{\rm{.84}}E_{{\rm{oed}}}^{{\rm{ref}}}$ $5E_{{\rm{oed}}}^{{\rm{ref}}}$ $1.5E_{{\rm{ur}}}^{{\rm{ref}}}$ 2 0.2 0.5 0.9
黏土 0 $E_{\rm{s}}^{1 ? 2}$ ${\rm{1}}{\rm{.32}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{8}}E_{{\rm{oed}}}^{{\rm{ref}}}$ $2.5E_{{\rm{ur}}}^{{\rm{ref}}}$ 1 0.2 0.8 0.9
表 4  杭州典型黏土HSS模拟的参数比例关系
图 4  基坑抗隆起开挖稳定性验算示意图
图 5  抗隆起稳定性结构参数组合图
图 6  支护结构侧移结构参数组合图
图 7  考虑经济性的支护结构侧向位移随地下连续墙厚度变化
模式 敏感性权重
H h3 d
抗隆起 0.910 0.090
抗倾覆 0.500 0.500
支护结构侧移 0.875 0.125
表 5  杭州典型黏土地区地下连续墙支护结构的敏感性重建议指标
1 徐中华, 王卫东 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 1810, 31 (1): 258- 264
XU Zhong-hua, WANG Wei-dong Selection of soil constitutive model in foundation excavation numerical analysis under sensitive environment[J]. Rock and Soil Mechanics, 1810, 31 (1): 258- 264
2 宋广, 宋二祥 基坑开挖数值模拟中土体本构模型的选取[J]. 工程力学, 2014, 31 (5): 86- 94
SONG Guang, SONG Er-xiang Selection of soil constitutive model in numerical simulation of foundation pit excavation[J]. Engineering Mechanics, 2014, 31 (5): 86- 94
3 王卫东, 吴江斌, 黄绍铭 上海地区建筑基坑工程的新进展与特点[J]. 地下空间与工程学报, 2005, 1 (4): 547- 553
WANG Wei-dong, WU Jiang-bin, HUANG Shao-ming New progress and characteristics of excavation construction in Shanghai area[J]. Chinese Journal of Underground Space and Engineering, 2005, 1 (4): 547- 553
4 李卓峰, 林伟岸, 朱瑶宏, 等 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1476- 1508
LI Zhuo-feng, LIN Wei-an, ZHU Yao-hong, et al Field test and analysis of soil displacement caused by underground excavation reinforcement control[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1476- 1508
5 张艳书, 薛栩超, 庄海洋, 等 软土层对地铁狭长深基坑地表沉降的影响研究[J]. 地下空间与工程学报, 2018, 14 (6): 1640- 1651
ZHAO Yan-shu, XUE Xu-chao, ZHUANG Hai-yang Study on the Influence of soft soil on ground settlement of subway narrow and long excavation[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (6): 1640- 1651
6 袁静, 龚晓南 基坑开挖过程中软土性状若干问题的分析[J]. 浙江大学学报: 工学版, 2001, 35 (5): 465- 470
YUAN Jing, GONG Xiao-nan Analysis of soft soil properties during foundation pit excavation[J]. Journal of Zhejiang University: Engineering Science, 2001, 35 (5): 465- 470
7 BENZ T. Small strain stiffness of soils and its numerical consequences [D]. Stuttgart: University of Stuttgart, 2006.
8 施有志, 阮建凑, 吴昌兴 厦门地区典型地层HS-small模型小应变参数敏感性分析[J]. 科学技术与工程, 2017, 17 (2): 100- 105
SHI You-zhi, RUAN Jian-cou, WU Cang-xing Sensitivity analysis of small strain parameters in HS-small model of typical strata in Xiamen area[J]. Science Technology and Engineering, 2017, 17 (2): 100- 105
doi: 10.3969/j.issn.1671-1815.2017.02.017
9 汪中卫. 考虑时间与小应变的地铁深基坑变形及土压力研究[D]. 上海: 同济大学, 2004.
WANG Zhong-wei. Study on deformation and earth pressure of subway deep excavation considering time and small strain [D]. Shanghai: Tongji university, 2004.
10 王卫东, 王浩然, 徐中华 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33 (8): 2283- 2290
WANG Wei-dong, WANG Hao-ran, XU Zhong-hua Experimental study on soil hardening model parameters in numerical analysis of excavation[J]. Rock and Soil Mechanics, 2012, 33 (8): 2283- 2290
doi: 10.3969/j.issn.1000-7598.2012.08.008
11 龚晓南 对岩土工程数值分析的几点思考[J]. 岩土力学, 2011, 32 (2): 321- 325
GONG Xiao-nan Some thoughts on numerical analysis of geotechnical engineering[J]. Rock and Soil Mechanics, 2011, 32 (2): 321- 325
doi: 10.3969/j.issn.1000-7598.2011.02.001
12 俞建霖, 龙岩, 夏霄, 等 狭长型基坑工程坑底抗隆起稳定性分析[J]. 浙江大学学报: 工学版, 2017, 51 (11): 2165- 2174
YU Jian-lin, LONG Yan, XIA Xiao, et al Analysis on anti-heave stability of narrow and long excavation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (11): 2165- 2174
13 黄宏伟, 龚文平, 庄长贤, 等 重力式挡土墙鲁棒性设计[J]. 同济大学学报, 2014, 42 (3): 377- 385
HUANG Hong-wei, GONG Wen-ping, ZHUANG Chang-xian, et al Robust design of gravity retaining wall[J]. Journal of Tongji University, 2014, 42 (3): 377- 385
14 赵密, 张少华, 钟紫蓝, 等 桩下独立基础稳健性设计与分析[J]. 岩土力学, 2019, 40 (11): 1- 9
ZHAO Mi, ZHANG Shao-hua, ZHONG Zi-lan, et al Design and analysis of the robustness of independent foundation under pile[J]. Rock and Soil Mechanics, 2019, 40 (11): 1- 9
15 宗露丹, 徐中华, 翁其平, 等 小应变本构模型在超深大基坑分析中的应用[J]. 地下空间与工程学报, 2019, 15 (Suppl. 1): 232- 242
ZONG Lu-dan, XU Zhong-hua, WENG Qi-ping, et al Application of small strain constitutive model in analysis of deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (Suppl. 1): 232- 242
16 BOLTONM D The strength and dilatancy of sands[J]. Géotechnique, 1986, 36 (1): 65- 78
doi: 10.1680/geot.1986.36.1.65
17 BRINKGREVE R B J, BROERE W. Plaxis material models manual [M]. Delft: Delft University of Technology & PLAXIS B. V., 2006.
18 李连祥, 张永磊, 扈学波 基于PLAXIS 3D 有限元软件的某坑中坑开挖影响分析[J]. 地下空间与工程学报, 2016, 12 (Suppl. 1): 254- 266
LI Lian-xiang, ZHANG yong-lei, HU Xue-bo Impact analysis of pit excavation based on PLAXIS 3D finite element software[J]. Chinese Journal of Underground Space and Engineering, 2016, 12 (Suppl. 1): 254- 266
19 王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海: 同济大学, 2012.
WANG Hao-ran. Research on prediction method of deep excavation deformation and environmental impact in soft soil area of Shanghai [D]. Shanghai: Tongji University, 2012.
20 张雪婵. 软土基坑狭长型深基坑性状分析[D]. 杭州: 浙江大学, 2012.
ZHANG Xue-chan. Characteristics analysis of long and narrow deep excavation with soft soil [D]. Hangzhou: Zhejiang University, 2012.
21 浙江省建筑设计研究院. 建筑基坑工程技术规范[S]. 杭州: 浙江工商大学出版社, 2014.
22 吴桑 浅析上海地下明挖车站地下连续墙预算指标[J]. 科学技术创新, 2019, 21: 88- 90
WU Sang A brief analysis of the budget index of underground diaphragm wall in Shanghai underground excavation station[J]. Scientific and Technological Innovation, 2019, 21: 88- 90
doi: 10.3969/j.issn.1673-1328.2019.19.049
[1] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[2] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[3] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[4] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[5] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[6] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[7] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[8] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[9] 孙颖,胡艳香,张雪英,段淑斐. 面向情感语音识别的情感维度PAD预测[J]. 浙江大学学报(工学版), 2019, 53(10): 2041-2048.
[10] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.
[11] 夏永强, 肖南. T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报(工学版), 2018, 52(10): 1935-1942.
[12] 王幸, 徐武, 张晓晶, 张丽娜, 胡本润. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1610-1618.
[13] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[14] 江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 2017, 51(4): 825-833.
[15] 陈伟刚,邓华, 白光波, 董石麟, 朱忠义. 平板型铝合金格栅结构支座节点的承载性能[J]. 浙江大学学报(工学版), 2016, 50(5): 831-840.