Please wait a minute...
浙江大学学报(工学版)
机械工程     
层合板分层失效数值模拟与参数识别
籍庆辉, 朱平, 卢家海
1. 上海汽车集团股份有限公司 前瞻技术研究部,上海 201804; 2. 上海交通大学 机械系统与振动国家重点实验室, 上海 200240; 3. 上海交通大学 上海市复杂薄板结构数字化制造重点实验室,上海 200240
Numerical simulation and parameter identification of delamination failure for laminate
JI Qing-hui, ZHU Ping, LU Jia-hai
1. Research and Advanced Technology, SAIC Motor Corporation Limited, Shanghai 201804, China; 2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(3013 KB)   HTML
摘要:

为了精确预测纤维增强复合材料层合板分层失效问题,提出基于虚拟裂纹闭合法的复合材料层合板分层失效准则参数的识别方法.通过双悬臂梁(DCB)试样和末端缺口弯曲(ENF)试样准静态力学试验获得I型和Ⅱ型分层断裂韧性.综合虚拟裂纹闭合法和有限元法,分别建立I型、Ⅱ型以及I/Ⅱ混合型分层数值仿真模型.基于已有的分层混合模式试验数据验证该方法的有效性.针对汽车用平纹机织碳纤维复合材料,利用纯I型和纯Ⅱ型试验和混合模式弯曲试样仿真模型,对分层失效准则参数进行了识别.结果表明,运用所建立的参数识别方法能够准确地得到层合板分层失效准则参数,有效克服了传统试验方法获取失效参数的成本高和周期长的问题.

Abstract: The method of parameter identification for delamination failure criterion was proposed based on virtual crack closure technique (VCCT) in order to predict accurately delamination failure of fiber-reinforced composite laminate. The delamination fracture toughness of mode I and mode Ⅱ was obtained using quasi-static mechanical tests of double cantilever beam (DCB) and end notch flexure (ENF), respectively. The delamination FE models of mode I, mode Ⅱ and I/Ⅱ mixed-mode were made using VCCT and FEM. The proposed method was validated using existing mixed-mode experimental data. The parameters of power criterion and Benzeggagh-Kenane (B-K) criterion were identified using mixed-mode experimental data from reference. The delamination failure parameters was identified using experimental results of mode I and mode Ⅱ and simulative result of mixed-mode bending (MMB), for plain weave CFRP in automobile. Results show that parameters of failure criterion can be obtained accurately by the proposed method, which overcomes the high cost and long period of traditional experimental method.
出版日期: 2017-05-01
CLC:  TB 332  
基金资助:

国家自然基金资助项目(11372181);国汽轻研院开放课题资助项目(20130303).

通讯作者: 朱平,男,教授,博导. ORCID: 0000-0003-3836-8831.     E-mail: pzhu@sjtu.edu.cn
作者简介: 籍庆辉(1982—),男,博士,从事汽车轻量化等研究. ORCID: 0000-0003-2301-8476. E-mail: jiorwell@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.05.015.

JI Qing-hui, ZHU Ping, LU Jia-hai. Numerical simulation and parameter identification of delamination failure for laminate. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.05.015.

参考文献(References):
[1] YAO L, ALDERLIESTEN R C, ZHAO M, et al. Discussion on the use of the strain energy release rate for fatigue delamination characterization [J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 65-72.
[2] MURRI G B. Effect of data reduction and fiber-bridging on Mode Ⅰ delamination characterization of unidirectional composites [J]. Journal of Composites Materials, 2014, 48(19): 2413-2424.
[3] REEDER J R. An evaluation of mixed-mode delamination failure criteria [R]. 104210, Hampton: NASA,1992.
[4] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixedmode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439-49.
[5] LIUY M, ZHANG C, XIANG Y B. A critical plane-based fracture criterion for mixed-mode delamination in composite materials [J].Composites Part B: Engineering, 2015, 82: 212-220.
[6] 范学领,孙秦.复合材料分层断裂判据及扩展准则研究[J].计算力学学报,2011,28(3): 479-482.
FAN Xueling, SUN Qin. Study on composites delamination initiation and propagation criterion [J]. Chinese Journal of Computational Mechanics, 2011,28(3):212-220.
[7] PEREIRA A B, MORAIS A B. Mixed-mode Ⅰ + Ⅲ interlaminar fracture of carbon/epoxy laminates [J]. Composites Part A: Applied Science and Manufacturing, 2009, 40: 518-523.
[8] KRUEGER R. The Virtual crack closure technique: history, approach and applications. [R]. NASA/CR-2002-21162,Hampton: NASA, 2002.
[9] ROSA M M, MANUEL M F. Failure criteria for mixed mode delamination in glass fibre epoxy composites [J]. Composite Structures, 2010, 92(9): 2292-2298.
[10] KRUEGER R. Application of benchmark examples to assess the single and mixed-mode static delamination propagation capabilities in ANSYS [R]. NASA/CR-2012-217588, Hampton: NASA, 2012.
[11] 肖涛,左正兴,刘栋,等.基于虚拟裂纹闭合法计算裂纹扩展的能量释放率[J].北京理工大学学报,2010,30(1): 37-41.
XIAO Tao, ZUO Zheng-xing, LIU Dong, et al. Computation of the crack propagation energy release rate based on the virtual crack closure technique [J].Transactions of Beijing Institute of Technology, 2010, 30(1): 37-41.
[12] MOSLEM S, ANASTASIOS P, THOMAS K. Mixed-mode quasi-static failure criteria for adhesivelybondedpultruded GFRP joints[J]. Composites: Part A: Applied Science and Manufacturing, 2014, 59: 45-56.
[13] FLOROS I S, TSERPES K I, LOBEL T. Mode-I, mode-Ⅱ and mixed-mode Ⅰ/Ⅱ fracture behavior of compositebonded joints: Experimental characterization and numericalsimulation [J]. Composites Part B: Engineering, 2015, 78: 459-468.
[14] BUI Q V. A modified Benzeggagh-Kenanefracture criterion for mixed-mode delamination [J]. Journal of Composite Materials, 2011, 45(4): 389-413.
[15] PIRONDI A, GIULIESE G, MORONI F, et al. Comparative study of cohesive zone and virtual crack closure techniques for threedimensional fatigue debonding [J]. The Journal of Adhesion, 2014, 90(5/6):457-481.
[16] ASTM D5528. Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites [S]. American: ASTM, 2001.
[17] HB 7403.碳纤维复合材料层合板Ⅱ型断裂韧性GIIc测试方法[S].北京:中国航空工业集团公司,1996.
HB 7403. Mode Ⅱ interlaminar fracture toughness GIIc of CFRP laminates [S]. Beijing: AVIC, 1996.
[18] ASTM D6671. Standard test method for mixed mode Ⅰ-mode Ⅱ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites [S]. American: ASTM, 2001.
[19] PEREIRA A B, MORAIS A B. Mixed mode Ⅰ + Ⅱ interlaminar fracture of glass/epoxy multidirectional laminates-Part 2: Experiments [J].Composites Science and Technology, 2006, 66(13): 1896-1902.

[1] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[2] 周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1671-1676.
[3] 刘肃肃,余音. 复材非线性及渐进损伤的态型近场动力学模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 993-1000.
[4] 倪楠楠, 温月芳, 贺德龙, 王程成, 益小苏, 许亚洪. 功能无纺布插层复合材料的结构阻尼性能[J]. 浙江大学学报(工学版), 2016, 50(2): 353-359.
[5] 易琳, 王班, 郭吉丰. Kevlar绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(7): 1376-1381.
[6] 易琳,王班,郭吉丰. 绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(4): 3-4.
[7] 陈越超, 周晓军, 杨辰龙, 李钊. L型CFRP构件R区微观形态及孔隙特征[J]. 浙江大学学报(工学版), 2014, 48(10): 1775-1880.
[8] 陈雪刚, 王丽丹, 吕双双, 叶瑛. 季铵盐改性蒙脱石的超结构及其抗菌性能[J]. J4, 2010, 44(9): 1831-1837.