Please wait a minute...
浙江大学学报(工学版)
机械工程     
多阶并联式磁流变缓冲器可控性分析
欧阳青, 李赵春, 郑佳佳, 王炅
1. 南京理工大学 机械工程学院,江苏 南京 210094; 
2. 南京林业大学 机械电子工程学院,江苏 南京 210094
Controllability characteristics of magnetorheological damper with multi-stage parallel coil under impact load
OU YANG-qing, LI Zhao-chun , ZHENG Jia-jia, WANG Jiong
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094,China; 2. College of Electronic and Mechanical Engineering, Nanjing Forestry University, Nanjing 210094, China
 全文: PDF(2191 KB)   HTML
摘要:

为了实现磁流变缓冲器多维灵活可调的阻尼输出,设计多阶并联式线圈结构的磁流变缓冲器,并以火炮后坐缓冲为研究背景,讨论该新型缓冲器动态特性.利用各线圈可独立加载控制特点,对不同工作线圈、电流组合加载及各线圈延时加载进行冲击试验,分别分析磁流变效应在几何维度、时间维度上的变化对缓冲性能的影响.对比分析并联式磁流变缓冲器的优势.结合后坐缓冲模型及冲击试验结果,分析缓冲器在火炮后坐缓冲的可控性.研究表明:多阶并联式磁流变缓冲器可以通过改变几何维度及时间维度上电流加载实现多变的阻尼特性输出,然而由于缓冲器结构未能优化设计,导致缓冲器的可调系数不高,当最大后坐速度小于2.16 m/s时可以实现部分后坐输出理想阻尼力.

Abstract:

In order to get more flexible impact load absorption and isolation control, a multi-stage magnetorheological damper (MRD) with parallel electromagnetic coils was designed and the dynamic characteristic of the novel MRD was discussed in the recoil system of gun.According to the structural control features of electromagnetic coils which can apply separate current respectively, the impact experiments of MRD under different working coils and different input currents and timing control mode were conducted. The influences of magnetorheological effect changing in the geometric dimension and time dimension on the damping performance of MRD were analyzed. The advantages of the designed MRD were obtained by comparison analysis. The controllability of the damping force of MRD was discussed by the recoil dynamic theoretical analysis and impact test results. Results indicate that the novel structure of MRD can achieve variable damping characteristics by the separately controlled multi coils. The dynamic range of damping force is relatively small due to the deficiency of structure optimization. In this case, when the maximum recoil velocity is lessthan 2.16 m/s, the ideal recoil force can be realized in a partial recoil process.

出版日期: 2017-05-01
CLC:  TJ 303.4  
基金资助:

国家自然科学基金(51175265);国家自然科学青年基金(51305207);研究生科研创新基金(KYLX_0335).

通讯作者: 王炅,男,教授.ORCID: 0000-0002-2721-9323.     E-mail: wjiongz@njust.edu.cn
作者简介: 欧阳青(1987—),男,博士生.从事智能材料应用及半主动控制减振缓冲等研究. ORCID: 0000-0002-2028-3365. E-mail: ouyangking@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

欧阳青, 李赵春, 郑佳佳, 王炅. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.05.016.

OU YANG-qing, LI Zhao-chun,ZHENG Jia-jia, WANG Jiong. Controllability characteristics of magnetorheological damper with multi-stage parallel coil under impact load. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.05.016.

参考文献(References):
[1] HAJIHOSSEINLOO M A, HOOKE C J, WALTON D. Gun recoil system performance measurement and prediction [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1989, 203(2): 85-92.
[2] WANG D H, LIAO W H. Magnetorheological fluid dampers: a review of parametric modeling [J]. Smart materials and structures, 2011, 20(2): 023001.
[3] ZONG L H, GONG X L, XUAN S H, et al. Semi-active H∞ control of high-speed railway vehicle suspension with magnetorheological dampers [J]. Vehicle System Dynamics, 2013, 51(5): 600-626.
[4] POWELL L A, HU W, WERELEY N M. Magnetorheological fluid composites synthesized for helicopter landing gear applications [J]. Journal of Intelligent Material Systems and Structures, 2013, 24(9): 1043-1048.
[5] ATABAY E, OZKOL I. Application of a magnetorheological damper modeled using the current-dependent Bouc-Wen model for shimmy suppression in a torsional nose landing gear with and without freeplay [J]. Journal of Vibration and Control, 2014: 20(11): 1622-1644.
[6] PHU D X, CHOI S B, LEE Y S, et al. Design of a new engine mount for vertical and horizontal vibration control using magnetorheological fluid [J]. Smart Materials and Structures, 2014, 23(11): 117001.
[7] OZBULUT O E, HURLEBAUS S. Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes [J]. Earthquake Engineering & Structural Dynamics, 2011, 40(3): 273-291.
[8] 董小闵,余淼,廖昌荣,等.飞行器磁流变自适应半主动冲击缓冲器[J].西南交通大学学报,2009, 44(5): 748-752.
DONG Xiao-min, YU Miao, LIAO Chang-rong, et al. Adaptive semiactive bumper for aircraft [J]. Journal of Southwest Jiaotong University, 2009,44(5):748-752.
[9] 胡红生,王炅,蒋学争,等.火炮磁流变后坐阻尼器的设计与可控性分析[J].振动与冲击,2010, 29(2): 184-188.
HU Hong-sheng, WANG Jiong, JIANG Xue-zheng, et al. Design and controllability analysis of a gun magnetorheological recoil damper [J]. Journal of Vibration and Shock, 2010, 29(2): 184-188.
[10] LI Z C, WANG J. A gun recoil system employing a magnetorheological fluid damper [J]. Smart Materials and Structures, 2012, 21(10): 105003.
[11] AHMADIAN M, POYNOR J C. An evaluation of magneto rheological dampers for controlling gun recoil dynamics [J]. Shock and Vibration, 2001, 8(3/4):147-155.
[12] BAJKOWSKI M, BAJKOWSKI J M. Design of the magnetorheological damper for the recoil damping of the special object 7.62 mm calibre [J]. Machine Dynamics Research, 2012, 36(1): 15-23.
[13] BAJKOWSKI M, MAKUCH A, LINDEMANN Z. Determining parameters of recoil reduction system with spring and magnetorheological damper intended for special object [J]. Machine Dynamics Research, 2015, 38(3): 87-96.
[14] SINGH H J, WERELEY N M. Optimal control of gun recoil in direct fire using magnetorheological absorbers[J]. Smart materials and Structures, 2014, 23(5): 055009.
[15] MAO M, CHOI Y T, WERELEY N M. Effective design strategy for a magneto-rheological damper using a nonlinear flow model [C]∥Smart Structures and Materials 2005: Damping and Isolation. San Diego: Intermational Society for Optics and Photonics, 2005: 446-455.
[16] BAI X X, WERELEY N M, HU W, et al. A bidirectional-controllable magnetorheological energy absorber for shock and vibration isolation systems[C]∥Adaptive Structures and Intelligent Systems. Philadelphia: American Society of Mechanical Engineers, 2012: 485-495.
[17] YANG G, SPENCER B F, CARLSON J D, et al. Large-scale MR fluid dampers: modeling and dynamic performance considerations [J]. Engineering structures, 2002, 24(3): 309-323.
[18] GUAN X, LI J, OU J. Experiment study of largescale magnetorheological fluid damper [C]∥Smart Structures and Materials 2005: Damping and Isolation. San Diego: Intermational Society for Optics and Photonics, 2005: 588-595.
[19] 李延成.冲击载荷下磁流变缓冲器半主动控制研究[D].南京:南京理工大学, 2007.
LI Yan-cheng. Semi-active control of magnetorheological shock absorber subjected to impact Load [D]. Nanjing: Nanjing University of Science and Technology,2007.
[20] KOO J H, GONCALVES F D, AHMADIAN M. A comprehensive analysis of the response time of MR dampers [J]. Smart Materials and Structures, 2006, 15(2): 351.
[21] 张莉洁,王炅,钱林方.冲击载荷下磁流变阻尼器动态特性试验分析[J].兵工学报,2008, 29(5): 532-536.
ZHANG Li-jie, WANG Jiong, QIAN Lin-fang. Experimental analysis of the dynamic performance of magneto-rheological dampers under impact loads [J]. Acta Armamentarii, 2008, 29(5): 532-536.
[22] AHMADIAN M, NORRIS J A. Experimental analysis of magnetorheological dampers when subjected to impact and shock loading [J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(9): 1978-1985.
No related articles found!