Please wait a minute...
浙江大学学报(工学版)
电气工程     
计及裂纹损伤的IGBT模块热疲劳失效分析
江南, 陈民铀, 徐盛友, 赖伟, 高兵
重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400044
Thermal fatigue of IGBT module considering crack damage
JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing
State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
 全文: PDF(2792 KB)   HTML
摘要:

以实际IGBT功率模块为研究对象,通过有限元分析技术(FEM),探究裂纹损伤对IGBT模块热特性及疲劳寿命评估的影响规律,通过加速老化实验对有限元仿真结果进行验证.结果表明,焊料层裂纹是造成IGBT模块热阻增加的主要原因,在裂纹未萌生和萌生初期,裂纹对模块热特性的影响较小;一旦模块损伤到某一阶段,随着裂纹的继续扩展,模块热阻将近似指数增大,继续服役将导致功率模块在短时间内失效.通过研究发现,IGBT模块的疲劳寿命不仅与功率循环条件相关,还受到焊料层疲劳现状的影响,因此计及焊料层的疲劳累积效应的物理寿命模型相对于解析寿命模型能够更准确地对IGBT模块寿命进行评估.

Abstract:

The effect of crack damage on the thermal characteristics and fatigue life of an actual IGBT module was analyzed based on finite element method (FEM), and the simulation results were verified by aging test. Results show that crack in the solder layer is the main reason to increase the thermal resistance of IGBT module. When crack length is small, the relation between crack length and the thermal resistance is very weak. However, once the crack damage accumulates to a certain stage, the thermal resistance will have a near-exponential increase, then the IGBT module will fail in a short time. Fatigue life of the IGBT module is not only associated with power cycling conditions but also influenced by the fatigue status of solder layer. The physical life model which considers fatigue accumulation effect can evaluate the life of the IGBT module more accurately than the analytic life model.

出版日期: 2017-04-25
CLC:  TM 23  
基金资助:

国家自然科学基金资助项目(51477019);中央高校基本科研业务费资助项目(106112015CDJXY150004).

通讯作者: 陈民铀,男,教授.     E-mail: minyouchen@cqu.edu.cn
作者简介: 江南(1990—),女,硕士生,从事电力电子器件可靠性的研究.ORCID:0000-0003-3961-4764. E-mail:jnhappy0204@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.025.

JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.025.

[1] BALIGA B J. Fundamentals of power semiconductor devices [M]. New York: Springer, 2008.
[2] 唐勇,汪波,陈明,等.高温下的IGBT可靠性与在线评估[J].电工技术学报,2014,26(6): 17-23.
TANG Yong, WANG Bo, CHEN Ming, et al. Reliability and online evaluation of IGBT modules under high temperature [J]. Transactions of China Electrotechnical Society, 2014, 26(6): 17-23.
[3] WEI Lai, CHEN Min-you, RAN Li, et al. Small junction temperature cycles on dieattach solder layer in IGBT [C]∥2015 17th European Conference on Power Electronics and Applications. Geneva: \[s.n.\], 2015: 1-10.
[4] CHOI U M, BLAABJERG F, LEE K B. Study and handling methods of power IGBT module failures in power electronic converter systems [J]. Power Electronics IEEE Transactions, 2015, 30(5): 2517-2533.
[5] 郭祥辉.电子封装结构超声显微检测与热疲劳损伤评估[D].北京:北京理工大学,2015.
GUO Xiang-hui. Ultrasonic nondestructive testing and thermal fatigue evaluation of electronic packaging [D]. Beijing: Beijing Institute of Technology University,2015.
[6] OH H, HAN B, MCCLUSKEY P, et al. Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: a review [J]. IEEE Transactions on Power Electronics, 2015, 30(5):2413-2426.
[7] KOJI S, NAOKO I, TOSHIKI K, et al. Thermal and structural simulation techniques for estimating fatigue life of an IGBT module [C] ∥ 2008 20th International Symposium on Power Semiconductor Devices and IC’s. Orlando: IEEE, 2008: 181-184.
[8] 董少华.IGBT器件热可靠性的研究[D].济南:山东大学, 2014.
DONG Shao-hua. The research of thermal reliability of insulated gate bipolar transistor (IGBT) [D]. Jinan: Shandong University, 2014.
[9] 翟超.IGBT模块封装热应力研究[D].杭州:浙江大学, 2013.
ZHAI Chao. Research of thermal stress in IGBT module [D]. Hangzhou: Zhejiang University, 2013.
[10] 张雪垠.基于FEM的功率IGBT模块功率循环可靠性研究[D].上海:上海交通大学,2014.
ZHANG Xue-yin. Research on IGBT module power cycling reliability based on FEM method [D]. Shanghai: Shanghai Jiao Tong University, 2014.
[11] JAMIL W, PAUL S H. Simulating package behavior under power dissipation using uniform thermal loading [J]. IEEE Transactions on Advanced Packaging, 2001, 24(1): 60-65.
[12] JAMIL W, PAUL S H. Non-uniform temperature and strain fields in a powered package [J]. IEEE Transaction on Components and Packaging Technologies, 2000, 23(3): 521-527.
[13] ISHIKAWA S, TOHMYOH H, WATANABE S, et al. Extending the fatigue life of Pb-free SAC solder joints under thermal cycling [J]. Microelectronics Reliability, 2013, 53(5): 741-747.
[14] HUANG X, WU W, CHOU P. Fatigue life and reliability prediction of electronic packages under thermal cycling conditions through FEM analysis and acceleration models [C] ∥ 14th International Conference onElectronic Materials and
Packaging (EMAP). Lantau Island: IEEE, 2012: 1-6.
[15] LV X, ZHENG L, KONG X, et al. The research of relationship between the void of DBC and the temperature distribution [J]. 2011 International Symposium on Advanced Packaging Materials (APM). Xiamen: IEEE, 2011: 168-171.
[16] HALEH A, MICHAEL G P.电子封装技术与可靠性[M].中国电子学会电子制造与封装技术分会,译审.北京:化学工业出版社,2012.
[17] 田蕴杰,张小玲,谢雪松,等.IGBT热疲劳工作对焊料层可靠性的影响[J].固体电子学研究与进展,2014(03): 288-292.
TIAN Yun-jie, ZHANG Xiao-ling, XIE Xue-song, et al. Thermal fatigue effects on IGBT die attach reliability [J]. Research and Progress of SSE, 2014(03):288-292.
[18] 蒋长顺,谢扩军,许海峰,等.封装中的界面热应力分析[J].电子与封装,2006,6(8): 23-26.
JIANG Chang-shun, XIE Kuo-jun, XU Hai-feng, et al. Interfacial thermal stress analysis in packaging [J]. Electronics and Packaging, 2006, 6(8): 23-26.
[19] 吴煜东,常桂钦,彭勇殿,等.焊层空洞对IGBT模块热应力的影响[J].大功率变流技术,2014(01): 17-23.
WU Yu-dong, CHANG Gui-qin, PENG Yong-dian, et al. Effect of solder voids on IGBT thermal and stress performance [J]. High Power Converter Technology, 2014(01): 17-23.
[20] SHINOHARA K, YU Q. Fatigue life evaluation accuracy of power devices using finite element method [J]. International Journal of Fatigue, 2011, 33(9):1221-1234.
[21] MOROZUMI A, YAMADA K, MIYASAKA T, et al. Reliability of power cycling for IGBT power semiconductor modules [C] ∥ Industry Applications Conference. Chicago: IEEE, 2003: 1912-1918.
[22] SHINAOHARA K, YU Q. Fatigue evaluation of power devices [C] ∥ Electronic Packaging Technology and High Density Packaging. Beijing: IEEE, 2009:1277-1283.
[23] TAKAGI K, YU Q, SHIBUTANI T, et al. Study of thermal fatigue life caused by dispersion of solder joint [C] ∥ 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando: IEEE, 2008: 883-888.
[24] 李皎明,余岳辉,白铁城,等.晶闸管的瞬态热阻抗及其结温温升的研究[J].微纳电子技术,2001,38 (2):52-55.
LI Jiao-ming, YU Yue-hui, BAI Tei-cheng, et al. Research of thyristor’s transient thermal impedance and junction temperature rise [J]. Semiconductor Information, 2001, 38 (2): 52-55.
[25] TSENG H K, WU M. Electro-thermal-mechanical modeling of wire bonding failures in IGBT [C] ∥ 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). Taipei: IEEE, 2013: 152-157.
[26] DONGKAIS.无铅焊料互联及可靠性[M].刘建影,孙鹏,译.北京:电子工业出版社,2008: 252-256.
[27] 吴煜东,常桂钦,彭勇殿,等.焊层空洞对IGBT模块热应力的影响[J].大功率变流技术,2014(01): 17-23.
WU Yu-dong, CHANG Gui-qin, PENG Yong-dian, et al. Effect of solder void on IGBT thermal and stress performance [J]. High Power Converter Technology, 2014(01): 17-23.
[28] STUPAR A, BORTIS D, DROFENIK U, et al. Advanced setup for thermal cycling of power modules following definable junction temperature profiles [C] ∥International Power Electronics Conference (IPEC). Sapporo: IEEE, 2010: 962-969.
No related articles found!