Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1342-1352    DOI: 10.3785/j.issn.1008-973X.2022.07.010
土木工程、水利工程、交通工程     
内壁腐蚀混凝土管道爆破动力失效机制
黄一文1(),蒋楠1,3,*(),周传波1,李海波2,罗学东1,姚颖康3
1. 中国地质大学(武汉)工程学院,湖北 武汉 430074
2. 中国科学院武汉岩土力学研究所,湖北 武汉 430071
3. 江汉大学 爆破工程湖北省重点实验室,湖北 武汉 430056
Dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting
Yi-wen HUANG1(),Nan JIANG1,3,*(),Chuan-bo ZHOU1,Hai-bo LI2,Xue-dong LUO1,Ying-kang YAO3
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China
 全文: PDF(2250 KB)   HTML
摘要:

为了确保爆破振动荷载影响下临近服役多年埋地混凝土管道的安全,开展内部腐蚀混凝土管道爆破动力失效机制的研究. 基于Thistlethwayte混凝土腐蚀理论,建立运营期混凝土管道内壁腐蚀缺陷预测理论模型. 结合全尺寸承插式混凝土管道爆破模型试验及振动分析,验证承插式混凝土管道爆破动力响应的数值建模方法及参数选择. 通过腐蚀缺陷预测,开展不同腐蚀缺陷形态下的承插式混凝土管道爆破动力响应数值试验,分析爆破振动荷载作用下的腐蚀管道动力性能演化规律. 结合极限强度准则,确立腐蚀管道主控动力失效准则,提出爆破振动影响下运营期内壁腐蚀承插式混凝土管道的安全控制标准.

关键词: 承插式混凝土管道内腐蚀爆破振动动力响应安全判据    
Abstract:

The dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting was analyzed in order to ensure the safety of buried concrete pipeline which had been in service for many years under the influence of blasting vibration load. A theoretical model for predicting the corrosion defects of the inner wall of concrete pipes during the operation period was established based on the concrete corrosion theory of Thistlethwayte. The numerical modeling method and parameter selection of blasting dynamic response of concrete pipeline with bell-and-spigot joints were verified based on the full-scale blasting model test and vibration analysis of concrete pipeline with bell-and-spigot joints. Numerical tests of dynamic response of concrete pipeline with bell-and-spigot joints under different corrosion defects were conducted through the prediction of corrosion defects. The dynamic performance evolution of corrosion pipeline under blasting vibration load was analyzed. The main control dynamic failure criterion of corroded pipeline was established with the ultimate strength criterion. The safety control standard of corroded concrete pipeline with bell-and-spigot joints under the influence of blasting vibration was proposed.

Key words: concrete pipe with bell-and-spigot joints    internal corrosion    blasting vibration    dynamic response    safety criterion
收稿日期: 2021-07-31 出版日期: 2022-07-26
CLC:  TD 235  
基金资助: 国家自然科学基金资助项目(41807265,41972286,42072309);爆破工程湖北省重点实验室开放基金资助项目(HKLBEF202001,HKLBEF202002)
通讯作者: 蒋楠     E-mail: h2428948778@163.com;jiangnan@cug.edu.cn
作者简介: 黄一文(1995—),男,硕士生,从事地下工程及岩石爆破的研究. orcid.org/ 0000-0003-3902-1813. E-mail: h2428948778@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄一文
蒋楠
周传波
李海波
罗学东
姚颖康

引用本文:

黄一文,蒋楠,周传波,李海波,罗学东,姚颖康. 内壁腐蚀混凝土管道爆破动力失效机制[J]. 浙江大学学报(工学版), 2022, 56(7): 1342-1352.

Yi-wen HUANG,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Xue-dong LUO,Ying-kang YAO. Dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1342-1352.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.010        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1342

图 1  混凝土管内壁的腐蚀机理
图 2  腐蚀深度随时间的变化
图 3  现场试验的示意图
图 4  混凝土管道爆破振动的数值计算模型
模型材料 ρ/(g·cm?3) E/GPa μ c/MPa φ/(°) σt/MPa
岩层 2.50 30 0.3 5.5 43 2.58
土层 1.98 0.1 0.33 0.035 15 0.028
混凝土管道 2.40 31 0.2 3.18 54.9 1.43
橡胶圈 1.20 0.49
炮泥 0.85 1.8×10?4 0.35
表 1  数值模型的材料参数表
参数 数值 参数 数值
ρ/(g·cm?3) 1.15 R1 4.15
v/(m·s?1) 4000 R2 0.95
A/GPa 214 E0/(J·m?3 4.19
B/GPa 0.182 ω 0.15
表 2  炸药材料参数
监测点 vz/(cm·s?1) ez/% vy /(cm·s?1) ey/% vx /(cm·s?1) ex/%
现场监测 数值计算 现场监测 数值计算 现场监测 数值计算
D1 9.12 10.10 10.75 2.28 2.14 ?6.14 6.44 6.90 7.14
D2 12.56 12.90 2.71 3.64 3.25 ?10.71 7.95 7.02 ?11.70
D3 14.25 14.00 ?1.75 4.02 3.96 ?1.49 8.56 7.98 ?6.78
D4 14.46 14.50 0.28 3.19 2.88 ?9.72 7.53 7.36 ?2.26
D5 9.81 11.50 17.23 2.21 2.03 ?8.14 5.66 6.27 10.78
D6 9.02 10.07 11.64 2.16 1.86 ?15.28 3.12 3.22 3.21
表 3  数值计算和现场实验监测点数据
图 5  现场实测和数值模拟z方向振动速度在监测点D3处的时程曲线
工况 h/mm t/a 工况 h/mm t/a
1 0 ≤10.2 5 20 16.9
2 5 11.9 6 25 18.5
3 10 13.5 7 30 20.2
4 15 15.2
表 4  不同管道腐蚀深度的数值计算工况
图 6  模型中的管道腐蚀设置
图 7  不同腐蚀深度管道迎爆侧沿轴向最大主应力的峰值
图 8  不同腐蚀深度管道危险截面的最大主应力峰值
图 9  不同腐蚀深度管道单元的应力时程曲线
图 10  不同时刻的管道最大主应力云图
图 11  不同腐蚀深度管道危险截面的峰值振速
图 12  不同腐蚀深度管道的轴向峰值振速
h/mm vm/(cm·s?1) σm/MPa h/mm vm/(cm·s?1) σm/MPa h/mm vm/(cm·s?1) σm/MPa
0 12.45 0.87 10 18.34 1.79 20 18.30 1.78
0 12.21 0.82 10 16.24 1.48 25 18.24 1.98
0 16.84 1.37 10 15.66 1.40 25 21.03 2.31
0 14.24 1.03 15 16.56 1.66 25 22.14 2.45
0 10.89 0.66 15 18.82 1.79 25 20.89 2.23
5 13.88 1.26 15 20.26 1.89 25 17.06 1.89
5 15.01 1.41 15 18.73 1.70 30 19.46 2.23
5 17.55 1.58 15 16.35 1.59 30 22.10 2.70
5 15.80 1.48 20 19.00 1.89 30 22.87 2.92
5 13.25 1.22 20 20.29 2.10 30 21.20 2.50
10 16.81 1.52 20 21.89 2.16 30 21.87 2.68
10 15.62 1.43 20 19.16 1.88
表 5  不同截面的最大主应力和振速统计
h/mm σmvm的统计关系 R2
0 ${\sigma _{\rm{m} } }{\text{ = } } - 0.608+0.117{v_{\rm{m}}}$ 0.994
5 ${\sigma _{\rm{m}}}{\text{ = } }0.205+0.088{v_{\rm{m}}}$ 0.987
10 ${\sigma _{\rm{m}}}{\text{ = } } - 0.736+0.137{v_{\rm{m}}}$ 0.957
15 ${\sigma _{\rm{m}}}{\text{ = } }0.797+0.066{v_{\rm{m}}}$ 0.830
20 ${\sigma _{\rm{m}}}{\text{ = } }0.101+0.110{v_{\rm{m}}}$ 0.891
25 ${\sigma _{\rm{m}}}{\text{ = } }0.209+0.108{v_{\rm{m}}}$ 0.988
30 ${\sigma _{\rm{m}}}{\text{ = } } - 1.299+0.215{v_{\rm{m}}}$ 0.973
表 6  最大主应力峰值和峰值振速的统计关系
t/a h/mm vp/ (cm·s?1)
≤10.2 0 22.80
11.9 5 21.08
13.5 10 20.41
15.2 15 19.13
16.9 20 17.81
18.5 25 17.14
20.2 30 15.62
表 7  不同腐蚀深度混凝土管爆破控制振速
1 张黎明, 赵明生, 池恩安, 等 爆破振动对地下管道影响试验及风险预测[J]. 振动与冲击, 2017, 36 (16): 241- 247
ZHANG Li-ming, ZHAO Ming-sheng, CHI En-an, et al Experiments for effect of blasting vibration on underground pipeline and risk prediction[J]. Journal of Vibration and Shock, 2017, 36 (16): 241- 247
2 王栋, 何历超, 王凯 钻爆法施工对邻近埋地管道影响的现场实测与数值模拟分析[J]. 土木工程学报, 2017, 50 (Supple.2): 134- 140
WANG Dong, HE Li-chao, WANG Kai Field measurement and numerical simulation for influence of blasting excavation on adjacent buried pipelines[J]. China Civil Engineering Journal, 2017, 50 (Supple.2): 134- 140
doi: 10.15951/j.tmgcxb.2017.s2.021
3 JIANG N, ZHU B, HE X, et al Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation[J]. Tunnelling and Underground Space Technology, 2020, 102: 103448
doi: 10.1016/j.tust.2020.103448
4 WU T Y, JIANG N, ZHOU C B, et al. Experimental and numerical investigations on damage assessment of high-density polyethylene pipe subjected to blast loads [J]. Engineering Failure Analysis, 2022, 131: 105856.
5 FRANCINI R B, BALTZ W N Blasting and construction vibrations near existing pipelines: what are the appropriate levels?[J]. Journal of Pipeline Engineering, 2009, 8 (4): 253- 262
6 ZHAO K, JIANG N, ZHOU C B, et al Dynamic behavior and failure of buried gas pipeline considering the pipe connection form subjected to blasting seismic waves[J]. Thin-Walled Structures, 2022, 170: 108495
doi: 10.1016/j.tws.2021.108495
7 SHI C H, ZHAO Q J, LEI M F, et al Vibration velocity control standard of buried pipeline under blast loading of adjacent tunnel[J]. Soils and Foundations, 2020, 59 (6): 2195- 2205
8 张玉琦, 蒋楠, 贾永胜, 等 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2120- 2127
ZHANG Yu-qi, JIANG Nan, JIA Yong-sheng, et al Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2120- 2127
9 GAO F, JI C, LONG Y, et al Numerical investigation of the dynamic response of CWC structures subjected to underwater explosion loading[J]. Ocean Engineering, 2020, 203 (11): 107214
10 GUAN X M, ZHANG L, WANG Y W, et al Velocity and stress response and damage mechanism of three types pipelines subjected to highway tunnel blasting vibration[J]. Engineering Failure Analysis, 2020, 118: 104840
doi: 10.1016/j.engfailanal.2020.104840
11 OUALIT M, JAUBERTHIE R, RENDELL F, et al External corrosion to concrete sewers: a case study[J]. Urban Water, 2012, 9 (6): 429- 434
doi: 10.1080/1573062X.2012.668916
12 THISTLETHWAYTE D K B. The control of sulphides in sewerage systems [M]. Michigan: ANN Arbor Science Publishers, 1972.
13 JIANG G, KELLER J, BOND P L, et al Predicting concrete corrosion of sewers using artificial neural network[J]. Water Research, 2016, 92: 52- 60
doi: 10.1016/j.watres.2016.01.029
14 LI X, KHADEMI F, LIU Y, et al Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion[J]. Journal of Environmental Management, 2019, 234: 431- 439
15 混凝土和钢筋混凝土排水管: GB/T11836-2009 [S]. 北京: 中国标准出版社, 2009.
16 HALLQUIST J. LS-DYNA keyword user’s manual R8.0 [M]. California: Livermore Software Technology Corporation, 2015.
17 沈新普, 王琛元, 周琳 一个钢筋混凝土损伤塑性本构模型及工程应用[J]. 工程力学, 2007, 24 (9): 122- 128
SHEN Xin-pu, WANG Chen-yuan, ZHOU Lin A damage plastic constitutive model for reinforced concrete and its engineering application[J]. Engineering Mechanics, 2007, 24 (9): 122- 128
doi: 10.3969/j.issn.1000-4750.2007.09.019
18 张玉琦, 蒋楠, 周传波, 等 地铁基坑爆破振动作用邻近高层框架建筑物结构动力响应[J]. 煤炭学报, 2019, 44 (Supple.1): 118- 125
ZHANG Yu-qi, JIANG Nan, ZHOU Chuan-bo, et al Dynamic response of building structures with high-rise frames caused by blasting vibration at adjacent subway foundation pit[J]. Journal of China Coal Society, 2019, 44 (Supple.1): 118- 125
19 赵铮, 陶钢, 杜长星 爆轰产物JWL状态方程应用研究[J]. 高压物理学报, 2009, 23 (4): 277- 282
ZHAO Zheng, TAO Gang, DU Chang-xing, et al Application research on JWL equation of state of detonation products[J]. Chinese Journal of High Pressure Physics, 2009, 23 (4): 277- 282
doi: 10.3969/j.issn.1000-5773.2009.04.007
20 室外排水设计规范: GB50014-2006(2016版) [S]. 北京: 中国计划出版社, 2006.
21 朱斌, 蒋楠, 周传波, 等 基坑开挖爆破作用邻近压力燃气管道动力响应特性研究[J]. 振动与冲击, 2020, 39 (11): 201- 208
ZHU Bin, JIANG Nan, ZHOU Chuan-bo, et al Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit[J]. Journal of Vibration and Shock, 2020, 39 (11): 201- 208
doi: 10.13465/j.cnki.jvs.2020.11.027
22 夏宇磬, 蒋楠, 姚颖康, 等 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应[J]. 爆炸与冲击, 2020, 40 (4): 73- 83
XIA Yu-qing, JIANG Nan, YAO Ying-kang, et al Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves[J]. Explosion and Shock Waves, 2020, 40 (4): 73- 83
doi: 10.11883/bzycj-2019-0207
23 CEB (1993) CEB-FIP model code 1990: concrete structures [M]. London: Thomas Telford Services Ltd, 1993.
[1] 凌道盛,盛文军,黄博,赵云. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1684-1693.
[2] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[3] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[4] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[5] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[6] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[7] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[8] 史吏, 蔡袁强, 潘晓东. 列车加减速引起轨道结构和饱和地基振动[J]. J4, 2013, 47(11): 1932-1938.
[9] 王奎华,吴文兵,马少俊,马伯宁. 嵌岩桩沉渣特性对桩顶动力响应的影响[J]. J4, 2012, 46(3): 402-408.
[10] 蔡袁强,陈成振,孙宏磊. 黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J]. J4, 2011, 45(9): 1657-1663.
[11] 王振宇,梁旭,刘国华,程围峰. 水下爆破荷载作用下简支Kirchhoff板的积分变换解[J]. J4, 2011, 45(11): 1972-1979.
[12] 项贻强, 孙筠. 深层混凝土搭板处治路桥过渡段的动力响应[J]. J4, 2010, 44(10): 1863-1869.
[13] 高广运, 何俊锋, 李佳. 地铁运行引起的饱和地基动力响应[J]. J4, 2010, 44(10): 1925-1930.
[14] 杨冬英, 王奎华. 非均质土中基于虚土桩法的桩基纵向振动[J]. J4, 2010, 44(10): 2021-2028.
[15] 蒋吉清, 鲍亦兴, 陈伟球. 结构动力分析中回传射线矩阵法的扩展与应用[J]. J4, 2009, 43(6): 1065-1070.