Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (2): 330-339    DOI: 10.3785/j.issn.1008-973X.2023.02.013
土木与交通工程     
船舶撞击近海风机群桩基础的离心模型试验
孔令刚1,2(),余佳1,2,陈云敏1,2
1. 浙江大学 岩土工程研究所,浙江 杭州 310058
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
Centrifuge tests of ship impact on pile groups beneath offshore wind turbines
Ling-gang KONG1,2(),Jia YU1,2,Yun-min CHEN1,2
1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2084 KB)   HTML
摘要:

建立船舶撞击近海风机群桩基础的离心模拟系统. 在饱和密砂中开展了4组2×2群桩的撞击试验,包括水平撞击和撞击点距承台中心4.5倍桩径的水平偏心撞击群桩基础试验以及水平撞击和水平偏心撞击装有上部风机的群桩基础试验. 重点考察承台上部风机存在与否以及船舶撞击位置对船舶撞击力和群桩基础动力响应的影响. 试验结果表明,风机与群桩基础之间存在明显动力相互作用.承台的振动带动风机发生水平摆动和扭转振动;风机分担和消耗一部分经船舶撞击传递给群桩基础的能量,导致在自由振动阶段承台的振幅快速衰减.撞击承台的位置对撞击力和群桩内力有明显影响.对比水平和水平偏心撞击群桩试验,虽然偏心撞击工况下的撞击速度比水平撞击工况下的大26% ,但偏心撞击的撞击力峰值比水平撞击的小20 %;在群桩受偏心撞击工况下各基桩桩头弯矩峰值相差最大达3.2倍.偏心撞击更易引发群桩破坏.

关键词: 群桩近海风机水平偏心撞击动力响应离心试验    
Abstract:

An onboard system was built to simulate ship impact on the pile group foundation of offshore wind turbines. Four centrifugal model tests on a 2×2 pile group were conducted in saturated dense sand, including the tests on pile groups with and without an upper wind turbine subjected to lateral impact or eccentric impact with an eccentricity of 4.5 times pile diameters. The influence of the exist of wind turbine on top of pile cap and the impacted position by ship on pile cap on the impact force and the dynamic response of pile groups was investigated. Data from the model tests showed that strong dynamic interaction existed between the wind turbine and its underlying pile group. The motion of the pile cap made the wind turbine cause both lateral and torsional vibrations. The wind turbine shared and dissipated part of the energy transferred from the ship, which made the acceleration amplitudes of the pile cap attenuate quickly in the free vibration phase. In addition, the impact position on pile cap significantly affected the impact force and the internal forces of the group piles. The measured peak impact force from the test on the pile group without wind turbine subjected to eccentric impact was 20% smaller than that from the test on the pile group subjected to lateral impact, and the impact velocity in the former test was 26% higher than that in the latter. The maximum ratio of the peak pile-head bending moments of the piles was 3.2 in the test on the pile group without wind turbine subjected to eccentric impact. Generally, comparing with lateral impact on pile cap by ship, eccentric impact is more critical to make a pile group fail.

Key words: pile group    offshore wind turbine    lateral eccentric impact    dynamic response    centrifuge test
收稿日期: 2021-08-21 出版日期: 2023-02-28
CLC:  TU 47  
基金资助: 国家自然科学基金资助项目(51579218).; 国家自然科学基金基础科学中心资助项目(51988101)
作者简介: 孔令刚(1974—),男,副研究员,从事基础工程、近海工程、土工模型试验技术研究. orcid.org/0000-0002-5824-1275. E-mail: klg@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孔令刚
余佳
陈云敏

引用本文:

孔令刚,余佳,陈云敏. 船舶撞击近海风机群桩基础的离心模型试验[J]. 浙江大学学报(工学版), 2023, 57(2): 330-339.

Ling-gang KONG,Jia YU,Yun-min CHEN. Centrifuge tests of ship impact on pile groups beneath offshore wind turbines. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 330-339.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.013        https://www.zjujournals.com/eng/CN/Y2023/V57/I2/330

物理量 R 物理量 R
长度 1/80 体积 1/512000
质量 1/512000 物体密度 1
角度 1 撞击速度 1
位移 1/80 加速度 80
撞击力 1/6400 时间 1/80
渗透时间 1/6400 抗弯刚度 1/4.096×107
弯矩 1/512000 冲量 1/512000
能量 1/512000 频率 80
表 1  离心模型试验主要物理量的相似比
图 1  2×2模型群桩和模型风机
图 2  模型群桩承台示意图
图 3  摆锤撞击装置
图 4  船舶撞击近海风机群桩基础模拟试验布置图
编号 荷载类型 风机 孔压
监测
v/
(m·s?1)
Fpeak/MN Δt/s
L 水平撞击 2.36 39.78 0.025
LS 2.40 42.70 0.022
E 水平偏心撞击
(偏心距4.5D)
2.97 31.75 0.032
ES 3.13 32.89 0.030
表 2  试验工况主要参数(原型尺度)
图 5  摆锤摆动角度和锤头速度时程曲线(模型尺度)
图 6  撞击力时程曲线
图 7  撞击力峰值与撞击速度的关系
图 8  桩周土超孔压比时程曲线
图 9  承台位移时程曲线
图 10  承台和风机加速度时程曲线
图 11  承台和风机加速度频谱对比图
图 12  水平撞击试验中桩3桩头弯矩和剪力时程曲线
图 13  E试验中基桩桩头弯矩时程曲线
1 KONG L G, CHEN R P, WANG S H, et al Response of 3×3 pile groups in silt subjected to eccentric lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141 (7): 04015029
doi: 10.1061/(ASCE)GT.1943-5606.0001313
2 KONG L G, FAN J Y, LIU J W, et al Group effect in piles under eccentric lateral loading in sand[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2019, 20: 243- 257
3 KONG L G, ZHANG Z C, CHEN Y M Nonlinear analysis of pile groups subjected to combined lateral and torsional loading[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2020, 21 (3): 179- 192
4 GU M, KONG L G, CHEN R P, et al Response of 1×2 pile group under eccentric lateral loading[J]. Computers and Geotechnics, 2014, 57: 114- 121
doi: 10.1016/j.compgeo.2014.01.007
5 孔令刚, 顾明, 陈仁朋, 等 偏心距对水平受荷双桩基础响应影响[J]. 岩石力学与工程学报, 2013, 32 (Suppl.2): 4174- 4182
KONG Ling-gang, GU Ming, CHEN Ren-peng, et al Influence of eccentricity on two-pile foundation subjected to lateral loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.2): 4174- 4182
6 顾明. 水平循环及偏心荷载作用下群桩性状模型试验研究 [D]. 杭州: 浙江大学, 2014.
GU Ming. Model test study on behavior of pile group subjected to lateral cyclic and eccentric loads [D]. Hangzhou: Zhejiang University, 2014.
7 CONSOLAZIO G R, COOK R A, MCVAY M C, et al. Barge impact testing of the St. George Island Causeway Bridge: final report: physical testing and data interpretation [M]. Gainesville: University of Florida, 2006.
8 CHU L M, ZHANG L M Centrifuge modeling of ship impact loads on bridge pile foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (4): 405- 420
doi: 10.1061/(ASCE)GT.1943-5606.0000446
9 CAI S W. Centrifuge modeling of system performance of bridge foundations in inland waterways subject to vessel collision [D]. Hong Kong: Hong Kong University of Science and Technology, 2010.
10 肖方初. 考虑船舶撞击位置和方向的群桩动力响应离心试验研究 [D]. 杭州: 浙江大学, 2019.
XIAO Fang-chu. Centrifuge model tests of ship impact on a pile group at different positions and directions [D]. Hangzhou: Zhejiang University, 2019.
11 EMAMI AZADI M R, NORDAL S, SADEIN M Nonlinear behavior of pile-soil subjected to torsion due to environmental loads on jacket type platforms[J]. WSEAS Transactions on Fluid Mechanics, 2008, 3 (4): 390- 400
12 陈云敏, 韩超, 凌道盛, 等 ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, (12): 1887- 1894
CHEN Yun-min, HAN Chao, LING Dao-sheng, et al Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotrechnical Engineering, 2011, (12): 1887- 1894
13 KONG L G, ZHANG L M Rate-controlled lateral-load pile tests using a robotic manipulator in centrifuge[J]. Geotechnical Testing Journal, 2007, 30 (3): 192- 201
14 YANG D, NAESGAARD E, BYRNE P, et al Numerical model verification and calibration of George Massey Tunnel using centrifuge models[J]. Canadian Geotechnical Journal, 2004, 41: 921- 942
doi: 10.1139/t04-039
15 凌道盛, 郭恒, 蔡武军, 等 地铁车站地震破坏离心机振动台模型试验研究[J]. 浙江大学学报: 工学版, 2012, 46 (12): 2201- 2209
LING Dao-sheng, GUO Heng, CAI Wu-jun, et al Research on seismic damage of metro station with centrifuge shaking table model test[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (12): 2201- 2209
16 BOLTON M D The strength and dilatancy of sands[J]. Géotechnique, 1986, 36: 65- 78
17 BOLTON M D, GUI M W, GARNIER J, et al Centrifuge cone penetration tests in sand[J]. Géotechnique, 1999, 49 (4): 543- 552
18 CRAIG W H, SABAGH S K Stress-level effects in model tests on piles[J]. Canadian Geotechnical Journal, 1994, 31 (1): 28- 41
doi: 10.1139/t94-004
19 GRUNDHOFF T, LATOTZKE J, LAUE J. Investigations of vertical piles under horizontal impact [C]// Centrifuge 98. Rotterdam: Balkema, 1998: 569-574.
20 MASOUD H B, JEAN L C, FAVRAUD C, et al An electromagnetic horizontal impact device for centrifuge testing[J]. International Journal of Physical Modelling in Geotechnics, 2007, 7 (1): 1- 11
doi: 10.1680/ijpmg.2007.070101
21 KONG L G, ZHANG L M Centrifuge modeling of torsionally loaded pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (11): 1374- 1384
22 AASHTO. Guide specifications and commentary for vessel collision design of highway bridges: GVCB-2009 [S]. Washington: American Association of State Highway and Transportation Officials, 2009.
23 CEN. Eurocode 1-actions on structures-part 1-7: general actions-accidental actions: EN1991-1-7 [S]. Brussels: European Committee for Standardization, 2006: 53.
24 铁道第三勘察设计院. 铁路桥涵设计基本规范: TB 1002.1-2005 [S]. 北京: 中国铁道出版社, 2005: 30-31.
25 BISHOP A W, ELDIN G Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength[J]. Géotechnique, 1950, 2 (1): 13- 32
26 黄博, 汪清静, 凌道盛, 等 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34 (7): 1313- 1319
HUANG Bo, WANG Qing-jing, LING Dao-sheng, et al Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (7): 1313- 1319
[1] 邱文亮,杨浩荣,吴广润. 悬索桥断索动力响应有限元模型参数研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1685-1692.
[2] 黄一文,蒋楠,周传波,李海波,罗学东,姚颖康. 内壁腐蚀混凝土管道爆破动力失效机制[J]. 浙江大学学报(工学版), 2022, 56(7): 1342-1352.
[3] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[4] 凌道盛,盛文军,黄博,赵云. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1684-1693.
[5] 王磊,俞峰,潘静杰. 敞口管型桩压入对既有受荷桩基承载性状影响[J]. 浙江大学学报(工学版), 2021, 55(12): 2243-2251.
[6] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[7] 郐艳荣, 齐梅兰, 李金钊. 近海岸桥梁下部结构波浪力分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2356-2364.
[8] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[9] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[10] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[11] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[12] 史吏, 蔡袁强, 潘晓东. 列车加减速引起轨道结构和饱和地基振动[J]. J4, 2013, 47(11): 1932-1938.
[13] 王奎华,吴文兵,马少俊,马伯宁. 嵌岩桩沉渣特性对桩顶动力响应的影响[J]. J4, 2012, 46(3): 402-408.
[14] 蔡袁强,陈成振,孙宏磊. 黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J]. J4, 2011, 45(9): 1657-1663.
[15] 王振宇,梁旭,刘国华,程围峰. 水下爆破荷载作用下简支Kirchhoff板的积分变换解[J]. J4, 2011, 45(11): 1972-1979.