Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2243-2251    DOI: 10.3785/j.issn.1008-973X.2021.12.003
土木工程、交通工程     
敞口管型桩压入对既有受荷桩基承载性状影响
王磊1,2(),俞峰1,2,*(),潘静杰1,2
1. 浙江理工大学 基础结构技术研究所,浙江 杭州 310018
2. 浙江省装配式混凝土工业化建筑工程技术研究中心,浙江 杭州 310018
Influence of jacking open-ended tubular piles on bearing behavior of existing in-service piles
Lei WANG1,2(),Feng YU1,2,*(),Jing-jie PAN1,2
1. Institute of Foundation and Structure Technologies, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Zhejiang Provincial Engineering and Technology Research Center of Assembly-Concrete Industrialized Buildings, Hangzhou 310018, China
 全文: PDF(1019 KB)   HTML
摘要:

基于经典桩侧摩阻力公式和圆孔扩张理论,优化考虑土压力系数、土塞增长率、扩孔塑性半径等问题,计算新增管桩的植入对在役桩承载性状的影响. 对比分析有限元的软件与理论计算结果,发现管型桩贯入引致的桩间土挤土效应,使在役桩侧摩阻力在一定深度范围内增加,且桩长越长、桩间距越小,贡献越明显. 新增桩与在役桩的距离小于3倍桩径,会形成局部群桩效应,使群桩协同工作时的桩顶沉降增加;距离大于6倍桩径,管型桩压入对既有桩侧摩阻力、群桩协同工作效应的影响较小.

关键词: 地下增层敞口管型桩在役桩承载性状群桩效应    
Abstract:

Based on the classical pile side resistance formula and the round hole expansion theory, the effect of the implantation of new pipe piles on the bearing characteristics of in-service pile was calculated by considering the soil pressure coefficient, the growth rate of the soil plug, the plastic radius of the expansion hole and so on. Comparing the software and theoretical calculation results of finite factors, the effect of inter-pile soil extrusion caused by pipe piles is induced, so that the resistance on the side of the serving pile increases in a certain depth range, and the longer the pile length and the smaller the pile spacing, the more obvious the contribution is. The distance between the new pile and the in-service pile is less than 3 times the pile diameter, a local pile effect is formed so that the settlement of the top of the pile increases, when the pile works together. The distance is greater than 6 times the pile diameter, and the pressure of the pipe pile will has less effect on the existing pile side resistance and the group pile co-operation effect.

Key words: underground-storey supplement    open-ended tubular piles    in-service pile    bearing behavior    pile group effect
收稿日期: 2021-01-17 出版日期: 2021-12-31
CLC:  TU 473.1  
基金资助: 浙江省自然科学基金重点资助项目(LZ17E080002);浙江省教育厅科研资助项目(Y201942631)
通讯作者: 俞峰     E-mail: 2316376262@qq.com;pokfulam@zstu.edu.cn
作者简介: 王磊(1995—),男,硕士生,从事桩基工程研究.orcid.org/0000-0002-2965-4011. E-mail: 2316376262@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王磊
俞峰
潘静杰

引用本文:

王磊,俞峰,潘静杰. 敞口管型桩压入对既有受荷桩基承载性状影响[J]. 浙江大学学报(工学版), 2021, 55(12): 2243-2251.

Lei WANG,Feng YU,Jing-jie PAN. Influence of jacking open-ended tubular piles on bearing behavior of existing in-service piles. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2243-2251.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.003        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2243

图 1  既有在役桩单位侧摩阻力计算点示意简图
图 2  管型桩圆孔扩张应力模型
图 3  沉桩挤土应力随径向变化图
层号 名称 h/m $ \gamma $/(kN·m?3) $ k $/(m·d?1) $ c $/kPa $ \varphi $/(°) $ E_{50}^{{\text{ref}}} $/MPa $E_{{\rm{oed}}}^{{\rm{ref}}}$/MPa $ E_{{\text{ur}}}^{{\text{ref}}} $/MPa $ \lambda $
1 素填土 5.1 17.7 5.3×10?4 9.0 12.0 20.0 20.0 60.0 0.35
2 淤泥质粉质黏土 11.5 17.9 2.2×10?4 11.2 19.5 17.5 17.5 87.5 0.35
3 淤泥质黏土 6.0 17.1 1.3×10?4 19.6 7.0 15.0 42.2 75.0 0.35
4 黏土 5.0 19.0 3.0×10?4 37.0 14.5 36.5 35.0 109.5 0.35
5 粉质黏土 5.0 18.9 3.9×10?4 35.0 16.0 35.0 35.0 105.0 0.35
6 黏土 5.4 18.0 3.0×10?4 52.5 9.0 22.5 38.5 90.0 0.35
7 强风化安山岩 12.0 22.0 7.8×10?2 450.0 53.0 75.0 74.4 225.0 0.25
表 1  各土层物理力学参数
d/m Qsu /kN S1/% S2/%
简单应力法 圆孔扩张法 有限元法
补桩前 1041.2 943.1 981.4 6.1 ?3.9
3D 1305.4 1201.1 1233.8 5.8 ?2.6
4D 1279.4 1183.5 1183.5 8.1 ?5.0
5D 1129.3 984.3 1042.3 8.3 ?5.5
6D 1074.5 934.7 991.2 8.4 ?5.7
表 2  新增桩长为25 m时不同桩间距下在役桩极限侧摩阻力对比
L/m Qsu /kN S1/% S2/%
简单应力法 圆孔扩张法 有限元法
补桩前 1041.2 943.1 981.4 6.1 ?3.9
15 1085.4 981.7 1001.3 8.4 2.0
20 1190.2 1042.2 1097.5 8.5 5.0
25 1305.4 1201.1 1233.8 5.8 2.6
表 3  新增桩与在役桩间距为3D时不同桩长下在役桩极限侧摩阻力对比
d/m Qpu /kN S3 /%
球孔扩张法 有限元法
补桩前 5407.4 5535.2 ?2.3
3D 5731.4 5979.3 ?4.1
4D 5594.3 5871.3 ?4.7
5D 5519.0 5802.6 ?4.9
6D 5438.6 5701.1 ?4.6
表 4  新增桩长为25 m时不同桩间距下在役桩极限桩端阻力对比
图 4  压入不同长度的管型桩在役桩桩周侧摩阻力随深度的分布
1 龚晓南, 伍程杰, 俞峰, 等 既有地下室增层开挖引起的桩基侧摩阻力损失分析[J]. 岩土工程学报, 2013, 35 (11): 1957- 1984
GONG Xiao-nan, WU Cheng-jie, YU Feng, et al Shaft resistance loss of piles due to excavation beneath existing basements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (11): 1957- 1984
2 伍程杰, 龚晓南, 俞峰, 等 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报:工学版, 2014, 48 (4): 671- 678
WU Cheng-jie, GONG Xiao-nan, YU Feng, et al Piles base resistance loss for excavation beneath existing high-rise building[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 671- 678
3 童立元, 李洪江, 刘松玉, 等 基于静力触探试验的基坑开挖卸荷单桩水平承载力损失预测研究[J]. 岩土工程学报, 2019, 41 (3): 501- 508
TONG Li-yuan, LI Hong-jiang, LIU Song-yu, et al Prediction of lateral capacity losses of a single pile adjacent to excavation of foundation pits based on CPT tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (3): 501- 508
4 杨敏, 周洪波. 承受侧向土体位移桩基础的一种耦合算法[J]. 岩石力学与工程学报, 2005, 24(24): 4491-4497.
YANG Min, ZHOU Hong-bo. A coupling analytical solution of piles subjected to lateral soil movements [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, (24)24: 4491-4497.
5 POULOS H G Effect of pile driving on adjacent piles in clay[J]. Canadian Geotechnical Journal, 1994, 31 (6): 856- 867
doi: 10.1139/t94-102
6 梁发云, 于峰, 黄茂松 受土体侧向位移作用既有轴向受荷单桩的简化算法[J]. 同济大学学报:自然科学版, 2011, 39 (6): 807- 813
LIANG Fa-yun, YU Feng, HUANG Mao-song A simplified analysis method for an axially loaded single pile subjected to lateral soil movement[J]. Journal of Tongji University: Natural Science, 2011, 39 (6): 807- 813
doi: 10.3969/j.issn.0253-374x.2011.06.004
7 姜彤, 李博, 杨晓燕, 等 静压桩沉桩对既有桩桩周土影响的PIV试验研究[J]. 地下空间与工程学报, 2018, 14 (5): 1185- 1194
JIANG Tong, LI Bo, YANG Xiao-yan, et al Experimental study on the influence of pile driving by static pressure pile on soil near the existing pile using PIV technique[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (5): 1185- 1194
8 龚晓南, 李向红 静力压桩挤土效应中的若干力学问题[J]. 工程力学, 2000, 17 (4): 7- 12
GONG Xiao-nan, LI Xiang-hong Several mechanical problems in compacting effects of static piling in soft clay ground[J]. Engineering Mechanics, 2000, 17 (4): 7- 12
doi: 10.3969/j.issn.1000-4750.2000.04.002
9 姚建平, 刘振兴, 李镜培, 等 沉桩对邻近既有桩内力变形的影响分析[J]. 结构工程师, 2015, 31 (5): 121- 126
YAO Jian-ping, LIU Zhen-xing, LI Jing-pei, et al Analysis of effects of pile driving on lateral soil moment of adjacent driven pile[J]. Structural Engineers, 2015, 31 (5): 121- 126
doi: 10.3969/j.issn.1005-0159.2015.05.021
10 李镜培, 张凌翔, 李林, 等 天然饱和黏土中新、旧桩荷载−沉降关系研究[J]. 岩石力学与工程学报, 2016, 35 (9): 1906- 1915
LI Jing-pei, ZHANG Ling-xiang, LI Lin, et al Analysis of load-settlement relationship of new and old piles in natural saturated clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (9): 1906- 1915
11 HAGERTY D J, PECK P B Heave and lateral movements due to pile driving[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97 (11): 1513- 1532
doi: 10.1061/JSFEAQ.0001700
12 齐昌广, 郑金辉, 赖文杰, 等 开口管桩挤土效应的源汇理论分析及透明土试验对比研究[J]. 应用基础与工程科学学报, 2020, 28 (4): 938- 952
QI Chang-guang, ZHENG Jin-hui, LAI Wen-jie, et al Theoretical analysis of squeezing effect of open-ended pipe pile based on source-sink method and contrastive study of transparent soil model test[J]. Chinese Journal of Basic Science and Engineering, 2020, 28 (4): 938- 952
13 CHANDLER R J The shaft friction of piles in cohesive soils in terms of effective stresses[J]. Civil Engineering and Public Works Review, 1968, 63 (6): 48- 53
14 POTYONDY J G Skin friction between varies soils and construction materials[J]. Geotechnique, 1961, 11 (4): 339- 354
doi: 10.1680/geot.1961.11.4.339
15 FENGF R F, ZHANG Q Q, LIU S W Experimental study of the effect of excavation on existing loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146 (9): 04020091
doi: 10.1061/(ASCE)GT.1943-5606.0002336
16 ZHANG Q Q, LIU S W, FENG R F, et al. Analytical method for prediction of progressive deformation mechanism of existing piles due to excavation beneath a pile supported building [J]. International Journal of Civil Engineering, 2019, 17(6): 751-763.
17 BROOMS B B Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90 (2): 27- 64
doi: 10.1061/JSFEAQ.0000611
18 梅国雄, 宰金珉 考虑变形的朗肯土压力模型[J]. 岩石力学与工程学报, 2001, 20 (6): 851- 854
MEI Guo-xiong, ZAI Jin-min Rankine earth pressure model considering deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20 (6): 851- 854
doi: 10.3321/j.issn:1000-6915.2001.06.022
19 雷华阳, 李肖, 陆培毅, 等 管桩挤土效应的现场试验和数值模拟[J]. 岩石力学, 2012, 33 (4): 1006- 1012
LEI Hua-yang, LI Xiao, LU Pei-yi, et al Field test and numerical simulation of squeezing effect of pipe pile[J]. Rock and Soil Mechanics, 2012, 33 (4): 1006- 1012
20 VESIC A C Expansion of cavities in the infinite soil mass[J]. Journal of Soil Mechanics and Foundations Division, 1972, 98 (3): 265- 290
doi: 10.1061/JSFEAQ.0001740
21 李月健, 陈云敏, 凌道盛 土体内空穴球形扩张问题的一般解及应用[J]. 土木工程学报, 2002, 35 (1): 93- 98
LI Yue-jian, CHEN Yun-min, LING Sheng-dao A general solution for the expansion of cavities in soil mass[J]. China Civil Engineering Journal, 2002, 35 (1): 93- 98
doi: 10.3321/j.issn:1000-131X.2002.01.019
22 刘俊伟, 张明义, 赵洪福, 等 基于球孔扩张理论和侧摩侧阻力退化效应的压桩力计算模拟[J]. 岩石力学, 2009, 30 (4): 1181- 1185
LIU Jun-wei, ZHANG Ming-yi, ZHAO Hong-fu, et al Computational simulation of jacking force based on spherical cavity expansion theory and friction fatigue effect[J]. Rock and Soil Mechanics, 2009, 30 (4): 1181- 1185
23 杨学林, 祝文畏, 周平槐 某既有高层建筑下方逆作开挖增建地下室设计关键技术[J]. 岩石力学与工程学报, 2018, 37 (Suppl.1): 3775- 3786
YANG Xue-lin, ZHU Wen-wei, ZHOU Ping-wei Design key technique of additional basement constructed by top-down excavation below the existing high-rise building[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (Suppl.1): 3775- 3786
24 中华人民共和国住房和城乡建设部. 建筑桩基技术规范: JGJ 94—2008 [S], 北京: 中国建筑工业出版社, 2008: 67-87.
[1] 唐德琪,俞峰,黄祥国,陈海兵,夏唐代. 开挖诱发坑内既有基桩附加内力的模型试验[J]. 浙江大学学报(工学版), 2019, 53(8): 1457-1466.
[2] 伍程杰, 龚晓南, 俞峰, 楼春晖, 刘念武. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报(工学版), 2014, 48(4): 671-678.