Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (12): 2356-2364    DOI: 10.3785/j.issn.1008-973X.2018.12.014
水利工程     
近海岸桥梁下部结构波浪力分析
郐艳荣1, 齐梅兰1,2, 李金钊1
1. 北京交通大学 土木建筑工程学院, 北京 100044;
2. 结构风工程与城市风环境北京市重点实验室, 北京 100044
Analysis of wave forces on bridge substructure in near-shore
KUAI Yan-rong1, QI Mei-lan1,2, LI Jin-zhao1
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
2. Beijing Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing 100044, China
 全文: PDF(1688 KB)   HTML
摘要:

采用雷诺时均Navier-Stokes(RANS)方程和标准k-ε湍流模型建立波浪水槽,分别针对波浪只作用于下部桩基和波浪作用于整个下部组合结构2种工况,模拟分析波浪特性对波浪力的影响.结果表明:波浪入射角为0°时,近岸条件下各桩柱受力大于平床,且前排桩柱受力随桩间距的增加而增加,后排桩柱受力随桩间距的增加而减小;群桩整体受力随波浪KC数和波高比成幂指数规律增加.桥梁下部组合结构整体所受波浪力随波浪入射方向变化较小,随KC数和波高比变化较大,最大增幅为704%;由于桥梁下部组合结构阻水宽度沿垂向变化显著,与KC数相比,波高比能更好地反映波浪特性对桥梁下部组合结构整体受力的影响.

Abstract:

The Reynolds-averaged Navier-Stokes (RANS) equations and standard k-ε turbulence model were used to establish the three-dimensional numerical wave flume. Considering the conditions that the wave only acted on the pile foundation and on the whole composite structure, the influence of the wave characteristics on the forces was simulated and analyzed. Results show that when the angle of wave incidence is zero, the wave forces on the piles in the near-shore are larger than that on the flat bed. And in the near-shore, the wave forces increase with pile spacing when the pile is in the front row, while decrease with pile spacing when the pile is in the back row. Furthermore, the total force on the pile foundation increases with KC number and wave height ratio according to the rule of power exponent. The wave force subjected by the bridge substructure varies little with the incident wave direction, but it varies greatly with KC number and wave height ratio, and the largest rate of growth is 704%. However, due to that the current-obstruction width of the composite structure varies greatly in vertical direction, compared with KC number, the wave height ratio can better reflect the effect of the wave characteristics on the wave forces subjected by the bridge substructure.

收稿日期: 2017-11-03 出版日期: 2018-12-13
CLC:  U443  
基金资助:

国家自然科学基金资助项目(51578062)

通讯作者: 齐梅兰,女,教授.orcid.org/0000-0002-2714-9206.     E-mail: mlqi@bjtu.edu.cn
作者简介: 郐艳荣(1989-),女,博士生,从事桥梁水动力学研究.orcid.org/0000-0003-0303-417X.E-mail:13115296@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

郐艳荣, 齐梅兰, 李金钊. 近海岸桥梁下部结构波浪力分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2356-2364.

KUAI Yan-rong, QI Mei-lan, LI Jin-zhao. Analysis of wave forces on bridge substructure in near-shore. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2356-2364.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.12.014        http://www.zjujournals.com/eng/CN/Y2018/V52/I12/2356

[1] 袁作祥, 吴有铭. 澳门西湾大桥主塔基础施工世界桥梁[J]. 世界桥梁, 2005, 4:28-30 YUAN Zuo-xiang, WU You-ming. Construction of pylon foundations of Sai Van Bridge in Macau[J]. World Bridges, 2005, 4:28-30
[2] 孙国强. 杭州湾跨海大桥深水区引桥采用钢管桩基础初析[J]. 公路, 2005, 6:39-42 SUN Guo-qiang. Analysis of steel pipe pile foundation used in deep-water approach bridge of Hangzhou Bay sea-crossing Bridge[J]. Highway, 2005, 6:39-42
[3] ZHAO M, CHENG L, TENG B. Numerical simulation of solitary wave scattering by a circular cylinder array[J]. Ocean Engineering, 2007, 34:489-499.
[4] YANG C, LIU Y, LIU C G. Predicting wave loads on adjacent cylinder arrays with a 3D model[J]. Journal of Hydraulic Research, 2015, 53(6):797-807.
[5] BONAKDAR L, OUMERACI H, ETEMAD-SHAHIDI A. Wave load formulae for prediction of wave-induced forces on a slender pile within pile groups[J]. Coastal Engineering, 2015, 102:49-68.
[6] 耿宝磊, 腾斌, 宁德志, 等. 畸形波作用下海洋平台小尺度杆件波浪荷载分析[J]. 大连海事大学学报, 2010, 36(1):39-43 GENG Bao-Lei, TENG Bin, NING De-zhi, et al. A time-domain analysis of wave force on small-scale cylinders of platform under freak waves[J]. Journal of Dalian Maritime University, 2010, 36(1):39-43
[7] MO W, JENSEN A, LIU L F. Plunging solitary wave andits interaction with a slender cylinder on a sloping beach[J]. Ocean Engineering, 2013, 74(1):48-60.
[8] WIENKEA J, OUMERACI G. Breaking wave impact force on a vertical and inclined slender pile-theoretical and large-scale model investigations[J]. Coastal Engineering, 2005, 52:435-462.
[9] XIAO H, HUANG W. Three-dimensional numerical modeling of solitary wave breaking and force on a cylinder pile ina coastal surf zone[J]. Journal of Engineering Mechanics, 2015, 141(8):A4014001.
[10] CHOI S J, LEE K H, GUDMESTAD O T. The effect of dynamic amplification due to a structure's vibration on breaking wave impact[J]. Ocean Engineering, 2015, 96:8-20.
[11] KAMATH A, CHELLA M A, BIHS H, et al. Breaking wave interaction with a vertical cylinder and the effect of breaker location[J]. Ocean Engineering, 2016, 128:105-115.
[12] BIHS H, KAMATH A, CHELLA M A, et al. Breaking-wave interaction with tandem cylinders under different impact scenarios[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(5):4016005(14).
[13] LAUNDER B E, SPALDING B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
[14] ISSA R I. Solution of implicitly discretized fluid flow equations by operator splitting[J]. Journal of Computational Physics, 1986, 62:40-65.
[15] BARTH T J. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations:AGARD R-787[R]. Brussels:Special Course on Unstructured Grid Methods for Advection Dominated Flows, 1992.
[16] HIRTC W, NICHOLS D B. Volume of fluid method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39:201-225.
[17] GORING D G. Tsunamis:the propagation of long waves onto a shelf:KH-R-38[R]. Pasadena:California Institute of Technology, 1978.
[18] YATES G T, WANG K H. Solitary wave scattering by a vertical cylinder:experimental study[C]//Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaka:ISOPE, 1994, 3:118-124.

[1] 雷燕云, 谢旭. 修正的Giuffre-Menegotto-Pinto钢筋滞回本构模型[J]. 浙江大学学报(工学版), 2018, 52(10): 1926-1934.
[2] 廖子南, 邵旭东, 乔秋衡, 曹君辉, 刘湘宁. 钢-超高性能混凝土组合板横向受弯静力试验及有限元模拟[J]. 浙江大学学报(工学版), 2018, 52(10): 1954-1963.
[3] 任松, 欧阳汛, 吴建勋, 陈钒, 王亮, 陈结. 含时间效应的硬石膏隧道弹-膨胀解析模型[J]. 浙江大学学报(工学版), 2018, 52(5): 896-905.
[4] 张雪辉, 陈吉祥, 白云, 陈昂, 黄德中. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324.
[5] 郭康仕, 庄艳峰, 段伟. 蒙脱石电渗微观机理试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2373-2382.
[6] 柯瀚, 董鼎, 陈云敏, 郭城, 冯世进. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164.
[7] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.
[8] 万晨光, 申爱琴, 郭寅川. 桥面铺装调平层与沥青面层层间剪切行为[J]. 浙江大学学报(工学版), 2017, 51(7): 1355-1360.