Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2373-2382    DOI: 10.3785/j.issn.1008-973X.2017.12.009
土木与交通工程     
蒙脱石电渗微观机理试验研究
郭康仕1, 庄艳峰1, 段伟2
1. 武汉大学 土木建筑工程学院, 湖北 武汉 430072;
2. 武汉建工集团股份有限公司, 湖北 武汉 430023
Experimental study on micro-mechanism of electro-osmosis using montmorillonite
GUO Kang-shi1, ZHUANG Yan-feng1, DUAN Wei2
1. School of Civil Engineering, Wuhan University, Wuhan 430072, China;
2. Wuhan Construction Engineering Group Co. Ltd, Wuhan 430023, China
 全文: PDF(3417 KB)   HTML
摘要:

为了在微观上探究电渗的作用机理,以单一矿物成分的蒙脱石为电渗对象,采用自制金属电极和EKG电极,设计4组平行试验,探讨土体离子迁移、电学参数、膨胀性能等物理化学方面的变化.试验结果表明,Al3+迁移能力远大于Cu2+和Fe2+,后两者难以在电场力的作用下移动,电极反应生成的金属离子对电渗排水基本没有促进作用;电渗削弱了蒙脱石的乙二醇膨胀性,且除铜电极外,铝、铁、EKG电极下电渗对靠近阴极的土的膨胀性抑制作用更强;电渗作用降低了蒙脱石的zeta电位绝对值;铝电极下Al3+的渗入严重降低了Ca2+的排出量,铁电极下Fe3+和Fe2+的渗入束缚了阳极附近土体中Na+的迁移;铁电极和EKG电极对土体有酸化作用,而铜电极、铝电极则不然.

Abstract:

Single mineral montmorillonite was taken as electro-osmosis object to explore the microcosmic mechanism of electro-osmosis. Four sets of parallel tests were designed using self-made metal electrodes and EKG (electro-kinetic geosynthetics) electrodes. The results of electro-osmosis were analyzed; the changes of the physicochemical aspects such as ion migration, electrical parameters and swelling properties were discussed. The experimental results show that Al3+ migration ability is much greater than Cu2+ and Fe2+, the latter two are difficult to move under the action of electric field force, the metal ions produced by the electrode reaction have little effect on the electro-osmotic drainage; the electro-osmosis weakened the ethylene glycol expansibility of montmorillonite, and in addition to the copper electrode, electro-osmosis under the aluminum, iron, EKG electrode has stronger inhibition on the expansion of soil near the cathode; the electro-osmotic effect reduced the absolute value of zeta potential of montmorillonite; the infiltration of Al3+ in the aluminum electrode seriously reduced the emission of Ca2+, and the infiltration of Fe3+ and Fe2+ in the iron electrode constrained the migration of Na+ in the soil near the anode. The iron electrode and the EKG electrode have acidification effect on the soil, while the copper and aluminum electrodes are not so.

收稿日期: 2017-03-05 出版日期: 2017-11-22
CLC:  TU443  
基金资助:

国家自然科学基金资助项目(41472039,51109168).

通讯作者: 庄艳峰,男,副教授.orcid.org/0000-0002-9816-5393.     E-mail: zhuang@mail.tsinghua.edu.cn
作者简介: 郭康仕(1994-),男,硕士生,从事电渗脱水固结研究.orcid.org/0000-0003-0500-8725.E-mail:guokangshi@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

郭康仕, 庄艳峰, 段伟. 蒙脱石电渗微观机理试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2373-2382.

GUO Kang-shi, ZHUANG Yan-feng, DUAN Wei. Experimental study on micro-mechanism of electro-osmosis using montmorillonite. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2373-2382.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.009        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2373

[1] JONES C, LAMONT-BLACK J, GLENDINNING S, et al. Recent research and applications in the use of electrokinetic geosynthetics[C]//4th European Geosynthetics Conference. Edinburgh:EuroGeo4, 2008:1-30.
[2] 李瑛,龚晓南.电渗法加固软基的现状及其展望[J].地基处理,2010,21(2):3-11. LI Ying, GONG Xiao-nan. Present situation and prospect of electro-osmotic consolidation of soft[J]. Ground Improvement, 2010, 21(2):3-11.
[3] ESRIG M I. Pore pressures, consolidation, and electrokinetics[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4):899-922.
[4] WAN T Y, MITCHELL J K. Electro-osmotic consolidation of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1976, 102(2):473-491.
[5] LEWIS R W, HUMPHESON C. Numerical analysis of electro-osmotic flow in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(8):603-616.
[6] SHANG J Q. Electroosmosis-enhanced preloading consolidation via vertical drains[J]. Canadian Geotechnical Journal, 1998, 35(3):491-499.
[7] 庄艳峰,王钊,林清.电渗的能级梯度理论[J].哈尔滨工业大学学报.2005,37(2):283-286. ZHUANG Yan-feng, WANG Zhao, LIN Qing. Energy level gradient theory for electro-osmotic consolidation[J]. Journal of Harbin Institute of Technology. 2005,37(2):283-286.
[8] 庄艳峰,王钊.电渗的电荷积累理论[J].岩土力学,2005,26(4):629-632. ZHUANG Yan-feng, WANG Zhao. Electric chargeaccumulation theory for electro-osmotic consolidation[J]. Rock and Soil Mechanics, 2005, 26(4):629-632.
[9] 陈卓,周建,温晓贵,等.电极反转对电渗加固效果的试验研究[J].浙江大学学报:工学版,2013,47(9):1579-1584. CHEN Zhuo, ZHOU Jian, WEN Xiao-gui, et al. Experimental research on effect of polarity reversal to electro-osmotic[J]. Journal of Zhejiang University:Engineering Science, 2013, 47(9):1579-1584.
[10] 郑凌逶,谢新宇,谢康和,等.电渗法加固地基试验及应用研究进展[J].浙江大学学报:工学版,2017,51(6):1064-1073. ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(6):1064-1073.
[11] SHANG J Q, LO K Y. Electrokinetic dewatering of a phosphate clay[J]. Journal of Hazardous Materials, 1997, 55(1):117-133.
[12] BURTON A S, CLIFFORD J B. Electro-osmotic contaminant removal process[J]. Journal of Environmental Engineering, 1992, 118(1):84-100.
[13] 陶燕丽,周建,龚晓南.电极材料对电渗过程作用机理的试验研究[J].浙江大学学报:工学版,2014,48(9):1618-1623. TAO Yan-li, ZHOU Jian, GONG Xiao-nan. Experimental study on function mechanism of electrode materials upon electro-osmotic process[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(9):1618-1623.
[14] 吴辉.软土地基电渗加固方法研究[D].清华大学,2015:60-79. WU Hui. Soft soil improvement by electro-osmosis techniques[D]. Tsinghua University, 2015:60-79.
[15] 彭劼,谢高强,苏波.电渗作用下高岭土的元素及矿物成分变化[J].河海大学学报:自然科学版,2016,44(2):135-140. PENG Jie, XIE Gao-qiang, SU Bo. Effects of electroosmosis on variation of elemental and mineral composition of kaolin[J]. Journal of Hohai University:Natural Sciences, 2016, 44(2):135-140.
[16] 刘清秉,项伟,崔德山,等.离子土固化剂改良膨胀土的机理研究[J].岩土工程学报,2011(4):648-654. LIU Qing-bing, XIANG Wei, CUI De-shan, et al. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011(4):648-654.
[17] 何宏平.黏土矿物与金属离子作用研究[M].北京:地质出版社,2001:73-85.
[18] 杨雅秀,张乃娴.中国黏土矿物[M].北京:地质出版社,1994:116-126.
[19] 陶燕丽,周建, 龚晓南.铁,石墨,铜和铝电极的电渗对比试验研究[J].岩石力学与工程学报,2013,32(增2):3355-3362. TAO Yan-li, ZHOU Jian, GONG Xiao-nan. Comparative experiment of electroosmosis of ferrum, graphite, copper and aluminum electrode[J]. Chinese Journal of Geotechnical Engineering, 2013, 32(Suppl. 2):3355-3362.
[20] 李瑛,龚晓南.等电势梯度下电极间距对电渗影响的试验研究[J].岩土力学,2012,33(1):89-95. LI Ying, GONG Xiao-nan. Experimental research on effect of electrode spacing on electro-osmotic dewatering under same voltage gradient[J]. Rock and Soil Mechanics, 2012, 33(1):89-95.
[21] 庄艳峰.电渗排水固结的设计理论和方法[J].岩土工程学报,2016,38(增1):152-155. ZHUANG Yan-feng. Theory and design method for electro-osmotic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Suppl.1):152-155.
[22] 胡黎明,洪何清,吴伟令.高岭土的电渗试验[J].清华大学学报:自然科学版,2010,5009):1353-1356. HU Li-ming, HONG He-qing, WU Wei-ling. Electro-osmosis tests on kaolin clay[J]. Journal of Tsinghua University:Science and Technology, 2010, 50(9):1353-1356.
[23] 王慧云,李明远,吴肇亮,等.石油磺酸盐、HPAM、pH值对蒙脱土zeta电位的影响[J].应用化学,2005,22(8):916-917. WANG Hui-yun, LI Ming-yuan, WU Zhao-liang, et al. Effects of Petroleum Sulfonate, HPAM and pH value on zeta potential of sodium montmorillonite suspensions[J]. Chinese Journal of Applied Chemistry, 2005, 22(8):916-917.
[24] 李佩玉,袁慰顺,林鸿福,等.对影响蒙脱石层间距诸因素的探索[J].中国地质科学院南京地质矿产研究所所刊,1986(1):63-78. LI Pei-yu, YUAN Wei-shun, LIN Hong-fu, et al. Discussion on factors influencing interlayer spacing variation of montmorillonite[J]. Nanjing Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1986(1):63-78.

[1] 任松, 欧阳汛, 吴建勋, 陈钒, 王亮, 陈结. 含时间效应的硬石膏隧道弹-膨胀解析模型[J]. 浙江大学学报(工学版), 2018, 52(5): 896-905.
[2] 张雪辉, 陈吉祥, 白云, 陈昂, 黄德中. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324.
[3] 柯瀚, 董鼎, 陈云敏, 郭城, 冯世进. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164.
[4] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.