交通工程、土木工程 |
|
|
|
|
基于改进Mask R-CNN与双目视觉的智能配筋检测 |
魏翠婷1( ),赵唯坚1,2,孙博超1,2,*( ),刘芸怡1 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 浙江大学 平衡建筑研究中心,浙江 杭州 310028 |
|
Intelligent rebar inspection based on improved Mask R-CNN and stereo vision |
Cuiting WEI1( ),Weijian ZHAO1,2,Bochao SUN1,2,*( ),Yunyi LIU1 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China |
引用本文:
魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
Cuiting WEI,Weijian ZHAO,Bochao SUN,Yunyi LIU. Intelligent rebar inspection based on improved Mask R-CNN and stereo vision. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1009-1019.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.014
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I5/1009
|
1 |
孙昊. 基于数字图像的钢筋工程快速检查方法研究[D]. 镇江: 江苏大学, 2019. SUN Hao. Research on fast inspection method of reinforcement based on digital image [D]. Zhenjiang: Jiangsu University, 2019.
|
2 |
KIM M K, THEDJA J P P, WANG Q Automated dimensional quality assessment for formwork and rebar of reinforced concrete components using 3D point cloud data[J]. Automation in Construction, 2020, 112: 103077
doi: 10.1016/j.autcon.2020.103077
|
3 |
CHI H L, KIM M K, LIU K Z, et al Rebar inspection integrating augmented reality and laser scanning[J]. Automation in Construction, 2022, 136: 104183
doi: 10.1016/j.autcon.2022.104183
|
4 |
YANG X, LI X, YE Y, et al Road detection and centerline extraction via deep recurrent convolutional neural network U-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (9): 7209- 7220
doi: 10.1109/TGRS.2019.2912301
|
5 |
PAN Y, ZHANG L Dual attention deep learning network for automatic steel surface defect segmentation[J]. Computer ‐Aided Civil and Infrastructure Engineering, 2022, 37 (11): 1468- 1487
doi: 10.1111/mice.12792
|
6 |
LI S, ZHAO X A performance improvement strategy for concrete damage detection using stacking ensemble learning of multiple semantic segmentation networks[J]. Sensors, 2022, 22 (9): 3341
doi: 10.3390/s22093341
|
7 |
姚刚, 廖港, 杨阳, 等. 基于卷积神经网络的预制叠合板多目标智能化检测方法[J/OL]. 土木与环境工程学报(中英文) , 2024, 46(1): 93-101 [2023-06-30]. http://kns.cnki.net/kcms/detail/50.1218.TU.20220423.2103.002.html. YAO Gang, LIAO Gang, YANG Yang, et al. Multi-target intelligent detection method of prefabricated laminated board based on convolutional neural network [J/OL]. Journal of Civil and Environmental Engineering , 2024, 46(1): 93-101[2023-06-30]. http://kns.cnki.net/kcms/detail/50.1218.TU.20220423.2103.002.html.
|
8 |
董国梁, 张雷, 辛山 基于深度学习的钢筋绑扎机器人目标识别定位[J]. 电子测量技术, 2022, 45 (11): 35- 44 DONG Guoliang, ZHANG Lei, XIN Shan Target recognition and location of steel bar binding robot based on deep learning[J]. Electronic Measurement Technology, 2022, 45 (11): 35- 44
|
9 |
JIN J, ZHANG W, LI F, et al Robotic binding of rebar based on active perception and planning[J]. Automation in Construction, 2021, 132: 103939
doi: 10.1016/j.autcon.2021.103939
|
10 |
LI Y, LU Y, CHEN J A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector[J]. Automation in Construction, 2021, 124: 103602
doi: 10.1016/j.autcon.2021.103602
|
11 |
SHIN Y, HEO S, HAN S, et al An image-based steel rebar size estimation and counting method using a convolutional neural network combined with homography[J]. Buildings, 2021, 11 (10): 463
doi: 10.3390/buildings11100463
|
12 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
13 |
HE K, GEORGIA G, PIOTR D, et al Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 386- 397
doi: 10.1109/TPAMI.2018.2844175
|
14 |
ZHAO K, KANG J, JUNG J, et al. Building extraction from satellite images using Mask R-CNN with building boundary regularization [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 247-251.
|
15 |
KIM B, CHO S Image-based concrete crack assessment using mask and region-based convolutional neural network[J]. Structural Control and Health Monitoring, 2019, 26 (8): e2381
|
16 |
XU Y, LI D, XIE Q, et al Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN[J]. Measurement, 2021, 178: 109316
doi: 10.1016/j.measurement.2021.109316
|
17 |
NIE S, JIANG Z, ZHANG H, et al. Inshore ship detection based on mask R-CNN [C]// IEEE International Geoscience and Remote Sensing Symposium . Valencia: IEEE, 2018: 693-696.
|
18 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 8759-8768.
|
19 |
HUANG Z, ZHONG Z, SUN L, et al. Mask R-CNN with pyramid attention network for scene text detection [C]// IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2019: 764-772.
|
20 |
LI Z, ZHOU F. FSSD: Feature fusion single shot multibox detector [EB/OL]. [2023-06-30]. https:// arxiv.org/abs/1712.00960.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5999- 6009
|
22 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision . Switzerland: Springer, 2018: 3-19.
|
23 |
YANG J, REN P, ZHANG D, et al. Neural aggregation network for video face recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 5216-5225.
|
24 |
WANG Q, WU T, ZHENG H, et al. Hierarchical pyramid diverse attention networks for face recognition [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2020: 8326-8335.
|
25 |
CHEN Y, DAI X, LIU M, et al. Dynamic convolution: attention over convolution kernels [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11030-11039.
|
26 |
XIE S, LIU S, CHEN Z, et al. Attentional ShapeContextNet for point cloud recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 4606-4615.
|
27 |
ZAARANE A, SLIMANI I, AL OKAISHI W, et al Distance measurement system for autonomous vehicles using stereo camera[J]. Array, 2020, 5: 100016
doi: 10.1016/j.array.2020.100016
|
28 |
PEPE M, FREGONESE L, SCAIONI M Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors[J]. European Journal of Remote Sensing, 2018, 51 (1): 412- 436
doi: 10.1080/22797254.2018.1444945
|
29 |
TUOMINEN S, NÄSI R, HONKAVAARA E, et al Assessment of classifiers and remote sensing features of hyperspectral imagery and stereo-photogrammetric point clouds for recognition of tree species in a forest area of high species diversity[J]. Remote Sensing, 2018, 10 (5): 714
doi: 10.3390/rs10050714
|
30 |
LI D, XU L, TANG X, et al 3D imaging of greenhouse plants with an inexpensive binocular stereo vision system[J]. Remote Sensing, 2017, 9 (5): 508
doi: 10.3390/rs9050508
|
31 |
ZHOU Y, GALLEGO G, REBECQ H, et al. Semi-dense 3D reconstruction with a stereo event camera [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 235-251.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|