Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1161-1173    DOI: 10.3785/j.issn.1008-973X.2024.06.007
土木工程、交通工程     
基于深度学习的隧道衬砌多病害检测算法
宋娟(),贺龙喜*(),龙会平
邵阳学院 土木与建筑工程学院,湖南 邵阳 422000
Deep learning-based algorithm for multi defect detection in tunnel lining
Juan SONG(),Longxi HE*(),Huiping LONG
School of Civil and Architectural Engineering, Shaoyang College, Shaoyang 422000, China
 全文: PDF(4841 KB)   HTML
摘要:

针对已有目标检测算法在隧道衬砌病害检测中全局信息提取不充分、检测精度低的问题,提出隧道衬砌表观病害检测算法TDD-YOLO. 该算法以YOLOv7框架为基础,采用MobileViT作为主干特征提取网络,提高网络全局信息和局部信息提取能力;在特征金字塔网络的上采样和下采样后增加Coordinate attention (CA)注意力模块,突出病害的特征信息,去除背景信息的干扰;提出卷积模块TP Block,在计算量较小的情况下进一步提高网络的特征提取能力. 为了验证所提出算法的有效性,选用SSD、Faster-RCNN、EfficientDet、YOLOv5、YOLOv7这5种算法进行对比分析. 实验结果表明,TDD-YOLO算法的F1为77.43%,相对5种对比算法,分别提高了15.58%、17.36%、12.19%、6.32%、6.14%;mAP为77.52%,相对5种对比算法,分别提高了15.20%、14.24%、9.44%、7.44%、6.39%. TDD-YOLO算法病害识别精度最高,综合性能最优,适用于实际隧道工程的病害检测任务.

关键词: 隧道病害深度学习病害识别目标检测神经网络    
Abstract:

A tunnel lining surface defect detection algorithm TDD-YOLO was proposed, for the problems of insufficient global information extraction and low detection accuracy of existing object detection algorithms in tunnel lining defect detection. The algorithm was based on the YOLOv7 framework. Firstly, MobileViT was used as the backbone feature extraction network to improve the global and local information extraction capability of the network. Secondly, Coordinate attention (CA) module was added after the upsampling and downsampling of the feature pyramid network to highlight the feature information of defects and remove the interference of background information. Finally, a convolutional module called TP Block was proposed to further improve the feature extraction ability of the network with less computation. Five algorithms, SSD, Faster-RCNN, EfficientDet, YOLOv5 and YOLOv7, were selected for comparison and analysis, in order to verify the effectiveness of the proposed algorithm. Results showed that the F1 of TDD-YOLO algorithm was 77.43%, which had an improvement of 15.58%, 17.36%, 12.19%, 6.32%, and 6.14%, respectively, compared with the above five contrast algorithms. The mAP was 77.52%, which had an improvement of 15.20%, 14.24%, 9.44%, 7.44%, and 6.39%, respectively. The TDD-YOLO algorithm has the highest defect recognition accuracy and the best overall performance, which is suitable for defect detection task of actual tunnel projects.

Key words: tunnel defect    deep learning    defect recognition    object detection    neural network
收稿日期: 2023-06-04 出版日期: 2024-05-25
CLC:  TP 393  
基金资助: 湖南省教育厅一般项目(20C1658,21C0602).
通讯作者: 贺龙喜     E-mail: songjsyuniversity@163.com;helxshaoyang@163.com
作者简介: 宋娟(1977—),女,副教授,从事绿色建造及缺陷识别工作研究. orcid.org/0009-0006-1995-990X. E-mail:songjsyuniversity@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋娟
贺龙喜
龙会平

引用本文:

宋娟,贺龙喜,龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.

Juan SONG,Longxi HE,Huiping LONG. Deep learning-based algorithm for multi defect detection in tunnel lining. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1161-1173.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.007        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1161

图 1  YOLOv7 网络结构
图 2  多分支堆叠模块结构
图 3  过渡模块结构
图 4  MobileViT网络结构
图 5  Coordinate attention注意力模块结构
图 6  常规卷积与部分卷积结构
图 7  TDD-YOLO网络结构
图 8  不同大小先验框的示意图
图 9  隧道表观病害图像示例
图 10  病害图像增强方法
病害类别NtotNtraNvalNtex
裂缝1102742180180
渗漏水1004688158158
衬砌脱落698470114114
表 1  隧道病害数据集参数
图 11  病害标注图像
网络LBMLs
最大值最小值阶段1阶段2
SSD6×10?46×10?61680.930
Faster RCNN1×10?41×10?61680.900
EfficientDet3×10?43×10?632160.900
YOLOv51×10?31×10?51680.940.005
YOLOv71×10?31×10?51680.940.005
TDD-YOLO1×10?31×10?51680.940.005
表 2  网络训练超参数
主干网络裂缝渗漏水衬砌脱落F1/%mAP/%
f1/%AP/%f1/%AP/%f1/%AP/%
MobileNet74.4375.5474.8575.7465.6662.3371.6571.20
GhostNet73.6473.6074.1275.3165.3260.8771.0369.93
ResNet74.5677.5274.4875.7666.8465.3071.9672.86
Swin transformer74.4876.9775.0378.6166.9164.4972.1473.36
MobileViT75.8379.5876.3279.6268.3265.2473.4974.81
表 3  主干网络评价指标表
网络MobileViTCATP BlockF1/%mAP/%v/(帧·s?1)MS/106
YOLOv7×××71.2971.1350.81142.3
YOLOv7+MobileViT××73.4974.8151.39113.9
YOLOv7+CA××71.5571.7151.43142.6
YOLOv7+TP Block××72.4272.5351.26142.6
YOLOv7+MobileViT+CA×74.6175.7252.50114.2
YOLOv7+MobileViT+ TP Block×75.1675.9152.79114.2
YOLOv7+CA+ TP Block×74.0573.6052.44142.9
YOLOv7+MobileViT+CA+ TP Block77.4377.5253.86114.5
表 4  网络消融实验结果表
网络裂缝渗漏水衬砌脱落F1/%mAP/%
f1/%AP/%f1/%AP/%f1/%AP/%
SSD69.4369.9771.8074.0044.3142.9861.8562.32
Faster RCNN64.9271.5470.5772.2144.7246.0860.0763.28
EfficientDet64.4270.7874.9376.0256.3757.4365.2468.08
YOLOv574.7273.8373.4972.4065.1264.0271.1170.08
YOLOv774.9776.5373.5574.7165.3562.1571.2971.13
TDD-YOLO80.4782.2879.5980.5871.7469.7177.4377.52
表 5  6种模型的实验精度结果对比表
图 12  简单明亮环境下的隧道病害图像检测结果
图 13  复杂昏暗环境下的隧道病害图像检测结果
1 《中国公路学报》编辑部 中国交通隧道工程学术研究综述: 2022[J]. 中国公路学报, 2022, 35 (4): 1- 40
“China Journal of Highway and Transport” editorial department Review on china's traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35 (4): 1- 40
doi: 10.3969/j.issn.1001-7372.2022.04.001
2 董飞, 房倩, 张顶立, 等 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50 (6): 104- 113
DONG Fei, FANG Qian, ZHANG Dingli, et al Analysis on defects of operational metro tunnels in Beijing[J]. China Civil Engineering Journal, 2017, 50 (6): 104- 113
3 HUANG H, LI Q, ZHANG D Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166- 176
doi: 10.1016/j.tust.2018.04.002
4 许力之, 王耀东, 朱力强, 等 隧道表面图像多目标智能识别算法研究[J]. 铁道学报, 2022, 44 (9): 154- 162
XU Lizhi, WANG Yaodong, ZHU Liqiang, et al Research on algorithm of intelligent recognition of mutiple objects of tunnel surface image[J]. Journal of the China Railway Society, 2022, 44 (9): 154- 162
doi: 10.3969/j.issn.1001-8360.2022.09.020
5 周鸣亮, 程文, 张东明, 等 运营期盾构隧道结构病害的自动化检测与三维可视化[J]. 应用基础与工程科学学报, 2021, 29 (5): 1265- 1279
ZHOU Mingliang, CHENG Wen, ZHANG Dongming, et al Automatic detection and 3D visualization of structural diseases of shield tunnel during operation[J]. Journal of Basic Science and Engineering, 2021, 29 (5): 1265- 1279
6 MA D, LIU J, FANG H, et al A multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN[J]. Construction and Building Materials, 2021, 312: 125385
doi: 10.1016/j.conbuildmat.2021.125385
7 ROSTEN E, PORTER R, DRUMMOND T Faster and better: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 32 (1): 105- 119
8 DONG Y, WANG J, WANG Z, et al A deep-learning-based multiple defect detection method for tunnel lining damages[J]. IEEE Access, 2019, 7: 182643- 182657
doi: 10.1109/ACCESS.2019.2931074
9 雷明锋, 张运波, 王卫东, 等 岩石岩性Mask R-CNN智能识别方法与应用研究[J]. 铁道科学与工程学报, 2022, 19 (11): 3372- 3382
LEI Mingfeng, ZHANG Yunbo, WANG Weidong, et al Investigation and application on lithology intelligent recognition method based on Mask R-CNN[J]. Journal of Railway Science and Engineering, 2022, 19 (11): 3372- 3382
10 XUE Y, CAI X, SHADABFAR M, et al Deep learning-based automatic recognition of water leakage area in shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2020, 104: 103524
doi: 10.1016/j.tust.2020.103524
11 REN Y, HUANG J, HONG Z, et al Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 117367
doi: 10.1016/j.conbuildmat.2019.117367
12 SAVINO P, TONDOLO F Automated classification of civil structure defects based on convolutional neural network[J]. Frontiers of Structural and Civil Engineering, 2021, 15 (2): 305- 317
doi: 10.1007/s11709-021-0725-9
13 DUNG C V Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99: 52- 58
doi: 10.1016/j.autcon.2018.11.028
14 MANDAL V, UONG L, ADU-GYAMFI Y. Automated road crack detection using deep convolutional neural networks [C]// IEEE International Conference on Big Data . IEEE, 2018: 5212-5215.
15 CHENG J C P, WANG M Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques[J]. Automation in Construction, 2018, 95: 155- 171
doi: 10.1016/j.autcon.2018.08.006
16 周中, 张俊杰, 龚琛杰, 等 基于深度语义分割的隧道渗漏水智能识别[J]. 岩石力学与工程学报, 2022, 41 (10): 2082- 2093
ZHOU Zhong, ZHANG Junjie, GONG Chenjie, et al Automatic identification of tunnel leakage based on deep semantic segmentation[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (10): 2082- 2093
17 彭磊, 周春, 胡锋, 等 基于深度学习的隧道掌子面节理智能检测与分割[J]. 人民长江, 2023, 54 (10): 243- 250
PENG Lei, ZHOU Chun, HU Feng, et al Research on intelligent detection and segmentation of rock joints tunnel face based on deep learning[J]. Yangtze River, 2023, 54 (10): 243- 250
18 刘德军, 仲飞, 黄宏伟, 等 运营隧道衬砌病害诊治的现状与发展[J]. 中国公路学报, 2021, 34 (11): 178- 199
LIU Dejun, ZHONG Fei, HUANG Hongwei, et al Present Status and development trend of diagnosis and treatment of tunnel lining diseases[J]. China Journal of Highway and Transport, 2021, 34 (11): 178- 199
doi: 10.3969/j.issn.1001-7372.2021.11.015
19 路耀邦, 刘永胜, 樊晓东 地铁隧道结构表观病害快速检测方法与应用[J]. 隧道建设: 中英文, 2021, 41 (Suppl.2): 655- 663
LU Yaobang, LIU Yongsheng, FAN Xiaodong Rapid detection method for surface defect for metro tunnel structure and its Application[J]. Tunnel Construction, 2021, 41 (Suppl.2): 655- 663
20 薛亚东, 李宜城 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报: 自然科学版, 2018, 45 (3): 100- 109
XUE Yadong, LI Yicheng A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (3): 100- 109
21 LIU J, ZHAO Z, LV C, et al An image enhancement algorithm to improve road tunnel crack transfer detection[J]. Construction and Building Materials, 2022, 348: 128583
doi: 10.1016/j.conbuildmat.2022.128583
22 ZHOU Z, ZHANG J, GONG C Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37 (6): 762- 780
doi: 10.1111/mice.12836
23 LI Y, BAO T, LI T, et al A robust real-time method for identifying hydraulic tunnel structural defects using deep learning and computer vision[J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38 (10): 1381- 1399
24 王宝坤, 王如路, 陈锦剑, 等. 基于深度学习的盾构隧道表观病害自动检测方法[EB/OL]. (2023-06-13) [2024-04-21]. https://doi.org/10.16183/j.cnki.jsjtu.2023.089.
25 XU Y, LI D, XIE Q, et al Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN[J]. Measurement, 2021, 178: 109316
doi: 10.1016/j.measurement.2021.109316
26 WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2023: 7464−7475.
27 MAKANTASIS K, PROTOPAPADAKIS E, DOULAMIS A, et al. Deep convolutional neural networks for efficient vision based tunnel inspection [C]// 2015 IEEE International Conference on Intelligent Computer Communication and Processing . [s. l.]: IEEE, 2015: 335−342.
28 MEHTA S, RASTEGARI M. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer [EB/OL]. [2024-04-21]. https://arxiv.longhoe.net/abs/2110.02178.
29 HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE: 2021: 13713−13722.
30 CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2023: 12021−12031.
31 MENG Z, XU S, WANG L, et al Defect object detection algorithm for electroluminescence image defects of photovoltaic modules based on deep learning[J]. Energy Science and Engineering, 2022, 10 (3): 800- 813
doi: 10.1002/ese3.1056
32 WANG Z, CAI Z, WU Y An improved YOLOX approach for low-light and small object detection: PPE on tunnel construction sites[J]. Journal of Computational Design and Engineering, 2023, 10 (3): 1158- 1175
doi: 10.1093/jcde/qwad042
33 李明超, 符家科, 张野, 等 耦合岩石图像与锤击音频的岩性分类智能识别分析方法[J]. 岩石力学与工程学报, 2020, 39 (5): 996- 1004
LI Mingchao, FU Jiake, ZHANG Ye, et al Intelligent recognition and analysis method of rock lithology classification based on coupled rock images and hammering audios[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (5): 996- 1004
[1] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[2] 刘议丹,朱小飞,尹雅博. 基于异质图卷积神经网络的论点对抽取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 900-907.
[3] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[4] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[5] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[6] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[7] 邓天民,程鑫鑫,刘金凤,张曦月. 基于特征复用机制的航拍图像小目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 437-448.
[8] 张会娟,李坤鹏,姬淼鑫,刘振江,刘建娟,张弛. 基于空间相关性增强的无人机检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 468-479.
[9] 王卓,李永强,冯宇,冯远静. 两方零和马尔科夫博弈策略梯度算法及收敛性分析[J]. 浙江大学学报(工学版), 2024, 58(3): 480-491.
[10] 周宇,甘露一,狄生奎,贺文宇,李宁波. 基于应变影响线的桥梁模型修正试验[J]. 浙江大学学报(工学版), 2024, 58(3): 537-546.
[11] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[12] 王骏骋,王法慧. 基于变权重PSO-Elman神经网络的路面附着系数估计[J]. 浙江大学学报(工学版), 2024, 58(3): 622-634.
[13] 钱庆杰,余军合,战洪飞,王瑞,胡健. 基于DL-BiGRU多特征融合的注塑件尺寸预测方法[J]. 浙江大学学报(工学版), 2024, 58(3): 646-654.
[14] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.
[15] 秦思怡,盖绍彦,达飞鹏. 混合采样下多级特征聚合的视频目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(1): 10-19.