Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 622-634    DOI: 10.3785/j.issn.1008-973X.2024.03.019
机械工程     
基于变权重PSO-Elman神经网络的路面附着系数估计
王骏骋(),王法慧
1. 浙江理工大学 机械工程学院,浙江 杭州 310018
Variable weight PSO-Elman neural network based roadadhesion coefficient estimation
Juncheng WANG(),Fahui WANG
1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(3572 KB)   HTML
摘要:

针对传统神经网络权值更新不稳定导致路面附着系数预估精度不高的问题,提出基于变权重粒子群优化(PSO)-Elman神经网络的路面附着系数估计方法. 搭建基于7自由度汽车动力学模型的神经网络模型,在Elman神经网络模型中引入粒子群算法降低训练绝对误差,并使用线性权重递减策略对粒子群算法中的权重进行改变,平衡粒子全局和局部搜索能力,实现网络权值矩阵优化;采用傅里叶函数方法拟合出理想滑移率-路面附着系数相关曲线;通过理论分析和仿真验证,证明采用该方法能够提升路面附着系数预估精度. 仿真结果表明:在定附和变附路面行驶工况下,相比于传统Elman神经网络,采用变权重PSO-Elman神经网络的路面附着系数估计方法获得的路面附着系数均方根误差分别平均降低了35.62%和19.20%,有效提升了防抱死控制效果.

关键词: 车辆状态路面附着系数神经网络粒子群防抱死控制    
Abstract:

The variable weight particle swarm optimization (PSO)-Elman neural network was proposed for road adhesion coefficient estimation, in order to address the issue that the unstable weight update of traditional neural network leads to the poor accuracy in the estimation of road adhesion coefficient. The neural network model was constructed on the basis of a seven degrees-of-freedom vehicle dynamic model. The particle swarm algorithm was applied in the Elman neural network model to reduce the training absolute error. The linear decreasing weight strategy was used to change the weight of the particle swarm algorithm, which was useful for balancing the particle’s global and local search ability. Thus, the optimization of network weight arrays were realized. Then, the correlation curve of optimal slip ratio and rood adhesion coefficient was fitted by the Fourier approximation method. Theoretical analysis and simulation verification proved that this method can improve the estimation accuracy of road adhesion coefficient. Simulation results showed that, under both fixed and unfixed adhesion coefficient roads, the root-mean-square error of the road adhesion coefficient obtained by the proposed variable weight PSO-Elman neural network estimation method was reduced by 35.62% and 19.20% on average compared with that of the traditional Elman neural network. Furthermore, the anti-lock control effect was also effectively improved.

Key words: vehicle state    road adhesion coefficient    neural network    particle swarm    anti-lock control
收稿日期: 2023-06-21 出版日期: 2024-03-05
CLC:  U 461.3  
基金资助: 国家自然科学基金资助项目(52205135).
作者简介: 王骏骋(1990—),男,讲师,博士,从事车辆系统动力学领域研究. orcid.org/0000-0003-0539-0063. E-mail:wangjc90@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王骏骋
王法慧

引用本文:

王骏骋,王法慧. 基于变权重PSO-Elman神经网络的路面附着系数估计[J]. 浙江大学学报(工学版), 2024, 58(3): 622-634.

Juncheng WANG,Fahui WANG. Variable weight PSO-Elman neural network based roadadhesion coefficient estimation. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 622-634.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.019        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/622

图 1  整车纵向动力学及单轮动力学建模
参数数值参数数值
m/kg1 825tf/m1.535
hg/m0.48tr/m1.531
Iz/(kg·m2)1 600$ {R_{{\text{ω }}}} $/m0.29
la/m1.26lb/m1.38
CD0.3A/m22
Cσ/N68 900Cα/(N·rad?162 900
表 1  车辆运动状态参数
图 2  Elman神经网络拓扑结构
图 3  变权重PSO权值矩阵优化流程图
图 4  理想滑移率估计单元
路面c1c2c3λpμa
覆冰0.05306.390.010.020.05
覆雪0.2094.100.050.060.19
潮湿鹅卵石0.4033.720.100.140.39
重潮湿沥青0.6333.770.200.110.60
典型潮湿沥青0.8533.800.350.130.80
轻潮湿沥青1.0329.490.440.140.95
干水泥1.2025.170.540.161.09
干沥青1.2823.990.520.171.17
表 2  典型路面参数值
图 5  典型路面附着系数特性曲线
图 6  路面附着系数-滑移率拟合曲线
n$ {E_{{\text{rmse\_}}\mu }} $n$ {E_{{\text{rmse\_}}\mu }} $
40.010990.0112
50.0087100.0100
60.0118110.5401
70.0090120.0249
80.0086130.0090
表 3  隐含层/承接层神经元个数试算结果
工况λpμa
10.04970.0239
20.19630.0630
30.38250.1454
40.79400.1304
表 4  代表性路面参数
图 7  4类工况下路面附着系数随时间变化曲线
工况Ermse-μp/%工况Ermse-μp/%
传统变权重传统变权重
10.038 3020.023 791?37.8930.131 3800.091 050?30.70
20.071 7640.037 732?47.4240.356 0600.261 800?26.47
表 5  路面附着系数预估均方根误差统计
图 8  4类工况下车轮滑移率随时间变化曲线
工况前轮后轮
Emse_λq/%Emse_λq/%
传统变权重传统变权重
10.227 80.212 6?6.660.227 70.212 6?6.64
20.103 10.095 5?7.410.103 20.095 7?7.32
30.067 30.064 2?4.830.069 00.064 7?6.63
40.002 80.002 7?3.500.004 00.003 2?20.74
表 6  车轮滑移率均方误差统计
图 9  工况5下路面附着系数随时间变化曲线
图 10  工况5下车轮滑移率随时间变化曲线
图 11  定附着与变附着工况路面附着系数预估值随时间变化曲线
估计方法Ermse_μp1/%p2/%p3/%
传统ElmanPSO-Elman变权重PSO-Elman
定附着路面0.016 0800.010 9140.007 576?32.13?52.89?30.59
变附着路面0.030 2810.019 1560.017 237?36.70?43.08?10.02
表 7  定附着与变附着工况路面附着系数预估均方根误差统计
1 《中国公路学报》编辑部 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30 (6): 1- 197
Editorial Department of China Journal of Highway and Transport Review on China’s automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30 (6): 1- 197
doi: 10.19721/j.cnki.1001-7372.2017.06.001
2 NGUYEN T, LECHNER B, WONG Y D Response-based methods to measure road surface irregularity: a state-of-the-art review[J]. European Transport Research Review, 2019, 11 (1): 1- 18
doi: 10.1186/s12544-018-0328-2
3 LEE H, TAHERI S Intelligent tires: a review of tire characterization literature[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9 (2): 114- 135
doi: 10.1109/MITS.2017.2666584
4 ZHANG D, ZOU Q, LIN H, et al Automatic pavement defect detection using 3D laser profiling technology[J]. Automation in Construction, 2018, 96: 350- 365
doi: 10.1016/j.autcon.2018.09.019
5 GARCIA-POZUELO D, OLATUNBOSUN O, YUNTA J, et al A novel strain-based method to estimate tire conditions using fuzzy logic for intelligent tires[J]. Sensors, 2017, 17 (2): 350
doi: 10.3390/s17020350
6 REINA G, LEANZA A, MESSINA A Terrain estimation via vehicle vibration measurement and cubature Kalman filtering[J]. Journal of Vibration and Control, 2020, 26 (11/12): 885- 898
7 WANG Y, HU J Y, WANG F A, et al Tire road friction coefficient estimation: review and research perspectives[J]. Chinese Journal of Mechanical Engineering, 2022, 35 (1): 1- 11
doi: 10.1186/s10033-021-00666-0
8 RATH J J, VELUVOLU K C, DEFOORT M Simultaneous estimation of road profile and tire road friction for automotive vehicle[J]. IEEE Transactions on Vehicular Technology, 2014, 64 (10): 4461- 4471
9 李韶华, 王桂洋, 杨泽坤, 等 基于DRBF-EKF算法的车辆质心侧偏角与路面附着系数动态联合估计[J]. 力学学报, 2022, 54 (7): 1853- 1865
LI Shaohua, WANG Guiyang, YANG Zekun, et al Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (7): 1853- 1865
10 QI G X, FAN X B, LI H A comparative study of the recursive least squares and fuzzy logic estimation methods for the measurement of road adhesion coefficient[J]. Australian Journal of Mechanical Engineering, 2023, 21 (4): 1230- 1246
doi: 10.1080/14484846.2021.1967839
11 PARK J, MIN K, KIM H, et al Road surface classification using a deep ensemble network with sensor feature selection[J]. Sensors, 2018, 18 (12): 4342
doi: 10.3390/s18124342
12 SUN Z Y, HAO X L, LI W, et al Asphalt pavement friction coefficient prediction method based on genetic-algorithm-improved neural network (GAI-NN) model[J]. Canadian Journal of Civil Engineering, 2022, 49 (1): 109- 120
doi: 10.1139/cjce-2020-0051
13 林棻, 王少博, 赵又群, 等 基于改进 Keras 模型的路面附着系数估计[J]. 机械工程学报, 2021, 57 (12): 74- 86
LIN Fen, WANG Shaobo, ZHAO Youqun, et al Road friction coefficient estimation based on improved Keras model[J]. Journal of Mechanical Engineering, 2021, 57 (12): 74- 86
doi: 10.3901/JME.2021.12.074
14 ŠABANOVIč E, ŽURAULIS V, PRENTKOVSKIS O, et al Identification of road-surface type using deep neural networks for friction coefficient estimation[J]. Sensors, 2020, 20 (3): 612
doi: 10.3390/s20030612
15 伍文广, 张凡皓, 徐孟龙 基于 Elman 神经网络的路面附着系数识别[J]. 重庆大学学报, 2023, 46 (3): 118- 128
WU Wenguang, ZHANG Fanhao, XU Menglong Identification of road friction coefficient based on Elman neural network[J]. Journal of Chongqing University, 2023, 46 (3): 118- 128
16 MALHOTRA R, SINGH P. Recent advances in deep learning models: a systematic literature review [J]. Multimedia Tools and Applications , 2023: 1-84.
17 金智林, 严正华 基于二次预测型横向载荷转移率的汽车侧翻预警研究[J]. 中国机械工程, 2019, 30 (15): 1790- 1795
JIN Zhilin, YAN Zhenghua Research on vehicle rollover warning based on secondary predictive lateral load transfer ratio[J]. China Mechanical Engineering, 2019, 30 (15): 1790- 1795
18 PEEIE M H B, OGINO H, OSHINOYA Y Skid control of a small electric vehicle with two in-wheel motors: simulation model of ABS and regenerative brake control[J]. International Journal of Crashworthiness, 2016, 21 (5): 396- 406
doi: 10.1080/13588265.2016.1147731
19 YOU S, GIL J, KIM W Fixed-time slip control with extended-state observer using only wheel speed for anti-lock braking systems of electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (7): 6368- 6378
20 宋涛. 轮毂驱动电动车的路面附着系数估计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
SONG Tao. Road friction coefficient estimation of in-wheel-motor electric vehicle [D]. Harbin: Harbin Institute of Technology, 2017.
21 AB AZIZ M F, MOSTAFA S A, FOOZY C F M, et al Integrating Elman recurrent neural network with particle swarm optimization algorithms for an improved hybrid training of multidisciplinary datasets[J]. Expert Systems with Applications, 2021, 183: 115441
doi: 10.1016/j.eswa.2021.115441
22 JARI A, AVOKH A PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104164
doi: 10.1016/j.engappai.2021.104164
23 彭晓燕, 章兢, 陈昌荣 基于 RBF 神经网络的最佳滑移率在线计算方法[J]. 机械工程学报, 2011, 47 (14): 108- 113
PENG Xiaoyan, ZHANG Jing, CHEN Changrong Calculation of RBF neural network based optimal slip ratio[J]. Journal of Mechanical Engineering, 2011, 47 (14): 108- 113
doi: 10.3901/JME.2011.14.108
24 YANG Y, TANG Q S, BOLIN L, et al Dynamic coordinated control for regenerative braking system and anti-lock braking system for electrified vehicles under emergency braking conditions[J]. IEEE Access, 2020, 8: 172664- 172677
doi: 10.1109/ACCESS.2020.3024918
25 戚尔鹏, 叶鹰 漂移幂函数的数值拟合与理论分析[J]. 情报学报, 2016, 35 (12): 1285- 1295
QI Erpeng, YE Ying Data fitting and theoretical analysis of the shifted power function[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35 (12): 1285- 1295
26 GUO H A simple algorithm for fitting a Gaussian function [DSP tips and tricks][J]. IEEE Signal Processing Magazine, 2011, 28 (5): 134- 137
doi: 10.1109/MSP.2011.941846
27 SUN T J, GAO Z H, GAO F, et al Intelligent vehicle automatic stop-and-go task based on humanized learning control model[J]. Advances in Civil Engineering, 2021, 2021: 1- 11
28 PANCHAL G, GANATRA A, KOSTA Y P, et al Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers[J]. International Journal of Computer Theory and Engineering, 2011, 3 (2): 332- 337
[1] 王卓,李永强,冯宇,冯远静. 两方零和马尔科夫博弈策略梯度算法及收敛性分析[J]. 浙江大学学报(工学版), 2024, 58(3): 480-491.
[2] 周宇,甘露一,狄生奎,贺文宇,李宁波. 基于应变影响线的桥梁模型修正试验[J]. 浙江大学学报(工学版), 2024, 58(3): 537-546.
[3] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[4] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.
[5] 汤雪扬,蔡小培,王伟华,常文浩,王启好. 基于粒子概率神经网络算法的钢轨波磨识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1766-1774.
[6] 宋昭漾,赵小强,惠永永,蒋红梅. 基于多级连续编码与解码的图像超分辨率重建算法[J]. 浙江大学学报(工学版), 2023, 57(9): 1885-1893.
[7] 王殿海,谢瑞,蔡正义. 基于最优汇集时间间隔的城市间断交通流预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1607-1617.
[8] 宋秀兰,董兆航,单杭冠,陆炜杰. 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1636-1643.
[9] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[10] 周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲. 基于集成学习与深度学习的日供水量预测方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1120-1127.
[11] 张海波,蔡磊,任俊平,王汝言,刘富. 基于Transformer的高效自适应语义分割网络[J]. 浙江大学学报(工学版), 2023, 57(6): 1205-1214.
[12] 覃承进,蒋俊正. 基于深度神经网络的雷达距离超分辨方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1215-1223.
[13] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[14] 吕鑫栋,李娇,邓真楠,冯浩,崔欣桐,邓红霞. 基于改进Transformer的结构化图像超分辨网络[J]. 浙江大学学报(工学版), 2023, 57(5): 865-874.
[15] 张剑钊,郭继昌,汪昱东. 基于融合逆透射率图的水下图像增强算法[J]. 浙江大学学报(工学版), 2023, 57(5): 921-929.