Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 537-546    DOI: 10.3785/j.issn.1008-973X.2024.03.011
土木工程、交通工程     
基于应变影响线的桥梁模型修正试验
周宇1,2,3(),甘露一1,3,4,狄生奎2,贺文宇5,李宁波1,3
1. 安徽建筑大学 土木工程学院,安徽 合肥 230601
2. 兰州交通大学 土木工程学院,甘肃 兰州 730070
3. 安徽建筑大学 建筑健康监测与灾害预防技术国家地方联合工程实验室,安徽 合肥 230601
4. 合肥市城市生命线工程安全运行监测中心,安徽 合肥 230601
5. 合肥工业大学 土木与水利工程学院,安徽 合肥 230601
Bridge model modification experiment based on strain influence line
Yu ZHOU1,2,3(),Luyi GAN1,3,4,Shengkui DI2,Wenyu HE5,Ningbo LI1,3
1. College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
2. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
3. National-local Joint Engineering Laboratory of Building Health Monitoring and Disaster Prevention Technology, Anhui Jianzhu University, Hefei 230601, China
4. Operation and Monitoring Center for Hefei Urban Safety and Security, Hefei 230601, China
5. College of Civil Engineering, Hefei University of Technology, Hefei 230601, China
 全文: PDF(1827 KB)   HTML
摘要:

为了验证桥梁应变影响线用于模型修正的有效性,针对某三跨钢板组合连续梁桥在单辆重车移动加载下的应变时程响应进行研究. 联合实测应变影响线和计算影响线构建目标函数;以影响线形态控制点处的微应变试验值作为输入层参数,以有限元模型结构几何尺寸信息与材料特征值作为输出层参数,构建反向传播 (BP)神经网络进行自我学习;基于训练完毕的BP神经网络,对待修参数进行预测,开展桥梁模型修正研究. 结果表明,所提出的有限元模型修正方法能够减小真实结构不确定性带来的建模误差,修正后的优化模型比初始模型更加贴近真实结构,目标函数相对误差降低29%;可以采用基于BP神经网络的模型参数修正方法对有限元模型参数进行预测.

关键词: 桥梁工程模型修正应变影响线影响线识别前馈神经网络    
Abstract:

The investigation on a three-span steel plate composite continuous girder bridge was conducted to obtain the strain time response under the moving load of a single heavy vehicle, in order to verify the effectiveness of strain influence line for model modification. An objective function was constructed by measured and calculated strain influence lines. The back propagation (BP) neural network was constructed to do self-training, by taking the micro-strain test value at the control point of the influence line form as the input layer parameter, and the structural geometry information and material characteristic value of finite element model as the output layer parameters. The parameters to be modified were predicted and the bridge model modification was carried out, on the basis of the self-trained BP neural network. Results showed that the proposed finite element model modification method can reduce the modelling error caused by the uncertainty of the real structure, the revised optimization model was closer to the real structure than the initial model, and the relative error of the objective function was reduced by 29%. The model parameter modification method based on BP neural network can be used to predict the parameters of the finite element model.

Key words: bridge engineering    model modification    strain influence line    influence line identification    feedforward neural network
收稿日期: 2023-01-06 出版日期: 2024-03-05
CLC:  TU 317  
基金资助: 国家自然科学基金资助项目 (51868045);安徽省高校省级自然科学研究资助项目 (2022AH050248);建筑健康监测与灾害预防国家地方联合工程实验室开放课题资助项目 (GG22KF002);安徽省高校优秀拔尖人才培育资助项目 (gxgnfx2022021);甘肃省建设科技资助项目 (JK2023-03);企业委托技术开发课题资助项目 (HYB20220240, HYB20230001).
作者简介: 周宇(1989—),男,副教授,博士,从事桥梁结构损伤识别与健康评估研究. orcid.org/0000-0003-4743-241X. E-mail:yuzhou923@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周宇
甘露一
狄生奎
贺文宇
李宁波

引用本文:

周宇,甘露一,狄生奎,贺文宇,李宁波. 基于应变影响线的桥梁模型修正试验[J]. 浙江大学学报(工学版), 2024, 58(3): 537-546.

Yu ZHOU,Luyi GAN,Shengkui DI,Wenyu HE,Ningbo LI. Bridge model modification experiment based on strain influence line. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 537-546.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.011        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/537

图 1  基于应变影响线的模型修正研究路线
图 2  两端带转动弹性约束的简支梁模型
图 3  桥梁结构模型与截面尺寸信息
图 4  试验桥梁应变影响线测试的测点布置及现场图
图 5  初始模型应变影响线与实测值的对比
图 6  BP神经网络拓扑图
类别Ep/EqT1p/T1qT2p/T2qTwp/Twq
初始值1.001.001.001.00
样本11.051.101.051.10
样本21.051.101.201.15
样本31.051.201.201.30
样本41.051.251.251.25
样本51.051.301.201.15
样本61.101.001.001.00
样本71.101.051.051.05
样本81.101.201.151.25
样本91.101.201.201.30
样本101.101.301.301.15
样本111.151.201.101.20
样本121.151.201.251.30
样本131.151.251.151.15
样本141.151.251.201.20
样本151.151.251.201.30
样本161.201.151.151.20
样本171.201.251.151.25
样本181.201.251.201.30
样本191.201.301.251.30
样本201.201.301.301.30
样本211.251.151.251.35
样本221.251.201.201.25
样本231.251.201.251.30
样本241.251.301.301.25
样本251.251.351.351.30
样本261.291.151.251.20
样本271.291.201.301.25
样本281.291.251.251.30
样本291.291.301.351.20
样本301.291.351.351.30
表 1  神经网络样本参数表
图 7  最优迭代与误差分析
类别E /MPaT1 /mmT2 /mmTw /mm
初始值206 00030.0040.0016.00
修正值290 24828.2536.4120.39
表 2  模型修正前后的参数取值
误差类别eaeperR
修正前3.3416.4938.000.996 69
修正后0.830.899.430.996 71
表 3  模型修正前后应变影响线误差对比
图 8  优化模型的应变影响线与实测值的对比
图 9  模型修正前后应变影响线相对误差对比
图 10  模型修正前后结构自振频率对比
1 ZHOU L, WANG L, CHEN L, et al Structural finite element model updating by using response surfaces and radial basis functions[J]. Advances in Structural Engineering, 2016, 19 (9): 1446- 1462
doi: 10.1177/1369433216643876
2 周宇, 狄生奎, 项长生, 等 基于弹性约束支承梁转角影响线的梁结构损伤诊断[J]. 浙江大学学报: 工学版, 2020, 54 (5): 879- 888
ZHOU Yu, DI Shengkui, XIANG Changsheng, et al Beam structure damage detection based on rotational-angle-influence-lines of elastic-constrained-support beam[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 879- 888
3 邓苗毅, 任伟新 基于响应面方法的结构有限元模型修正研究进展[J]. 铁道科学与工程学报, 2008, 5 (3): 42- 45
DENG Miaoyi, REN Weixin Study on structure finite element modelupdating based on response surface methodology[J]. Journal of Railway Science and Engineering, 2008, 5 (3): 42- 45
4 宗周红, 牛杰, 王浩 基于模型确认的结构概率损伤识别方法研究进展[J]. 土木工程学报, 2012, 45 (8): 121- 130
ZONG Zhouhong, NIU Jie, WANG Hao A review of structural damage identification methods based on the finiteelement model validation[J]. Journal of Civil Engineering, 2012, 45 (8): 121- 130
5 马印平, 刘永健, 刘江 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32 (11): 51- 61
MA Yinping, LIU Yongjian, LIU Jiang Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32 (11): 51- 61
doi: 10.19721/j.cnki.1001-7372.2019.11.004
6 郁胜, 周林仁, 欧进萍 基于径向基函数响应面方法的超大跨悬索桥有限元模型修正[J]. 铁道科学与工程学报, 2014, 11 (1): 1- 9
YU Sheng, ZHOU Linren, OU Jinping Finite element model updating of large suspension bridge based on radial basis function response surface[J]. Journal of Railway Science and Engineering, 2014, 11 (1): 1- 9
7 LIU Y, XU D J, LI Y, et al Fuzzy cross-model cross-mode method and its application to update the finite element model of structures[J]. Journal of Physics: Conference Series, 2011, 305 (1): 012102
8 王晓光, 党李涛, 马明 基于振动频率的响应面模型修正稳健估计法[J]. 公路交通科技, 2022, 39 (2): 77- 84
WANG Xiaoguang, DANG Litao, MA Ming A robust estimation method for response surface model Updating based on vibration frequency[J]. Journal of Highwayand Transportation Research and Development, 2022, 39 (2): 77- 84
9 周宇. 基于影响线与柔度矩阵的桥梁损伤信息融合诊断研究[D]. 兰州: 兰州理工大学, 2018.
ZHOU Yu. Research of bridge damage diagnosis based on information fusion with influence line and flexibility matrix[D]. Lanzhou: Lanzhou University of Technology, 2018.
10 周宇, 狄生奎, 李喜梅, 等 基于弹性约束梁应变影响线曲率的桥梁结构损伤识别[J]. 应用基础与工程科学学报, 2021, 29 (4): 901- 914
ZHOU Yu, DI Shengkui, LI Ximei, et al Damage identification of bridge structural based on strain influence line curvature of elastic restrained beam[J]. Journal of Basic Science and Engineering, 2021, 29 (4): 901- 914
11 翁顺, 朱宏平 基于有限元模型修正的土木结构损伤识别方法[J]. 工程力学, 2021, 38 (3): 1- 16
WENG Shun, ZHU Hongping Damage identification of civil structures based on finite element model updating[J]. Engineering Mechanics, 2021, 38 (3): 1- 16
12 ZHENG X, YI T H, ZHONG J W, et al Rapid evaluation of load-carrying capacity of long-span bridges using limited testing vehicles[J]. Journal of Bridge Engineering, 2022, 27 (4): 04022008
doi: 10.1061/(ASCE)BE.1943-5592.0001838
13 ZHOU Y, DI S K, XIANG C S, et al Damage identification of simply supported bridge based on rotational angle influence lines method[J]. Transactions of Tianjin University, 2018, 24 (6): 587- 601
doi: 10.1007/s12209-018-0135-9
14 CHEN Z W, CAI Q L, ZHU S Y Damage quantification of beam structures using deflection influence lines[J]. Structural Control and Health Monitoring, 2018, 25 (11): e2242
doi: 10.1002/stc.2242
15 HE W Y, REN W X Structural damage detection using a parked vehicle induced frequency variation[J]. Engineering Structures, 2018, 170: 34- 41
doi: 10.1016/j.engstruct.2018.05.082
16 朱安文, 曲广吉, 高耀南, 等 结构动力模型修正技术的发展[J]. 力学进展, 2002, 32 (3): 337- 348
ZHU Anwen, QU Guangji, GAO Yaonan, et al A study of themodifying techniques of structure dynamic models[J]. Advances of Mechanics, 2002, 32 (3): 337- 348
17 康志锐, 张巍, 宋帅, 等 基于响应面的波形钢腹板PC组合梁桥有限元模型修正方法的试验研究[J]. 铁道科学与工程学报, 2020, 17 (5): 1186- 1192
KANG Zhirui, ZHANG Wei, SONG Shuai, et al Experimental research on FE model updating of PC composite box girder bridge with corrugated steel websbased on response surface method[J]. Journal of Railway Science and Engineering, 2020, 17 (5): 1186- 1192
18 肖祥, 鄢宇, 何佳, 等 大跨度斜拉桥多尺度有限元模型及其修正[J]. 华中科技大学学报: 自然科学版, 2017, 45 (6): 120- 127
XIAO Xiang, YAN Yu, HE Jia, et al Multi-scale finite element modeling and model updating of long span cable-stayed bridge[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (6): 120- 127
19 方志, 唐盛华, 张国刚, 等 基于多状态下静动态测试数据的斜拉桥模型修正[J]. 中国公路学报, 2011, 24 (1): 34- 41
FANG Zhi, TANG Shenghua, ZHANG Guogang, et al Cable-stayed bridge model updating based on static and dynamic test data of multi-state[J]. China Journal of Highway and Transport, 2011, 24 (1): 34- 41
doi: 10.19721/j.cnki.1001-7372.2011.01.006
20 张皓, 李东升, 李宏男 有限元模型修正研究进展: 从线性到非线性[J]. 力学进展, 2019, 49 (1): 542- 575
ZHANG Hao, LI Dongsheng, LI Hongnan Recent progress on finite element model updating: from linearity to nonlinearity[J]. Advances in Mechanics, 2019, 49 (1): 542- 575
21 李宏男, 高东伟, 伊廷华 土木工程结构健康监测系统的研究状况与进展[J]. 力学进展, 2008, 38 (2): 151- 166
LI Hongnan, GAO Dongwei, YI Tinghua Research status and progress of structural health monitoring system in civil engineering[J]. Advances in Mechanics, 2008, 38 (2): 151- 166
doi: 10.6052/1000-0992-2008-2-J2007-016
22 王佐才, 丁雅杰, 戈壁, 等 桥梁结构非线性模型修正研究综述[J]. 交通运输工程学报, 2022, 22 (2): 59- 75
WANG Zuocai, DING Yajie, GE Bi, et al Review on nonlinear model updating for bridge structures[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (2): 59- 75
23 费庆国, 李爱群, 张令弥 基于神经网络的非线性结构有限元模型修正研究[J]. 宇航学报, 2005, 26 (3): 267- 269
FEI Qingguo, LI Aiqun, ZHANG Lingmi Study on finite elementmodel updating of nonlinear structures using neural network[J]. Journal of Astronautics, 2005, 26 (3): 267- 269
doi: 10.3321/j.issn:1000-1328.2005.03.005
24 杜德润, 李爱群, 杨玉冬, 等 基于神经网络修正的结构有限元模型简化[J]. 东南大学学报: 自然科学版, 2003, 35 (5): 635- 637
DU Derun, LI Aiqun, YANG Yudong, et al Structural FEA model simplification based on neural network’s modification[J]. Journal of Southeast University: Natural Science Edition, 2003, 35 (5): 635- 637
25 邢兵, 强士中, 唐堂 关于桥梁承载能力评定若干问题的思考[J]. 中外公路, 2015, 35 (6): 152- 155
XING Bing, QIANG Shizhong, TANG Tang Some thoughts on the assessment of bridge carrying capacity[J]. Journal of China and Foreign Highway, 2015, 35 (6): 152- 155
doi: 10.14048/j.issn.1671-2579.2015.06.034
26 陈志为, 杨维彪, 程棋锋, 等 基于正则化与B样条曲线的桥梁影响线识别方法[J]. 中国公路学报, 2019, 32 (3): 101- 108
CHEN Zhiwei, YANG Weibiao, CHENG Qifeng, et al Bridge influence line identification method based on regularization and B-spline curves[J]. China Journal of Highway and Transport, 2019, 32 (3): 101- 108
doi: 10.19721/j.cnki.1001-7372.2019.03.011
27 ZHENG X, YI T H, YANG D H, et al Stiffness estimation of girder bridges using influence lines identified from vehicle-induced structural responses[J]. Journal of Engineering Mechanics, 2021, 147 (8): 04021042
doi: 10.1061/(ASCE)EM.1943-7889.0001942
28 ZHOU Y, DI S K, XIANG C S, et al Damage detection for simply supported bridge with bending fuzzy stiffness consideration[J]. Journal of Shanghai Jiaotong University: Science, 2018, 23 (2): 308- 319
doi: 10.1007/s12204-018-1939-4
29 王飞球, 黄健陵, 符竞, 等 基于BP神经网络的跨既有线高速铁路桥梁施工安全风险评估[J]. 铁道科学与工程学报, 2019, 16 (5): 1129- 1136
WANG Feiqiu, HUANG Jianling, FU Jing, et al Risk assessment of construction safety of high-speed railway bridge across existing lines based on BP neural network[J]. Journal of Railway Science and Engineering, 2019, 16 (5): 1129- 1136
doi: 10.19713/j.cnki.43-1423/u.2019.05.003
30 庞聪, 江勇, 吴涛, 等 神经网络参数对地震类型识别的影响[J]. 科学技术与工程, 2022, 22 (18): 7765- 7772
PANG Cong, JIANG Yong, WU Tao, et al Effect of neural network parameters on earthquake type recognition[J]. Science Technology and Engineering, 2022, 22 (18): 7765- 7772
[1] 王意存,邵长孝,金台,邢江宽,罗坤,樊建人. 基于多门控混合专家网络的燃烧热化学流形表征[J]. 浙江大学学报(工学版), 2023, 57(12): 2401-2411.
[2] 马志元,刘江,刘永健,吕毅,张国靖. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 56(5): 909-919.
[3] 向胜涛,王达. 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报(工学版), 2022, 56(1): 100-110.
[4] 冀伟,邵天彦. 多跨连续梁桥顶推施工双导梁的优化分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1289-1298.
[5] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[6] 戴显荣,王路,王昌将,王晓阳,沈锐利. 多塔悬索桥全竖向摩擦板式抗滑方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1697-1703.
[7] 卫军,杜永潇,梁曼舒. 梁结构疲劳刚度退化对模态频率的影响[J]. 浙江大学学报(工学版), 2019, 53(5): 899-909.
[8] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[9] 李明, 刘扬, 杨兴胜. 考虑轴重相关的随机车流荷载效应[J]. 浙江大学学报(工学版), 2019, 53(1): 78-88.
[10] 赵人达, 贾毅, 占玉林, 王永宝, 廖平, 李福海, 庞立果. 强震区多跨长联连续梁桥减隔震设计[J]. 浙江大学学报(工学版), 2018, 52(5): 886-895.
[11] 宋筱轩,冯天恒,黄平捷,侯迪波,张光新. 基于动态数据驱动的突发水污染事故仿真方法[J]. 浙江大学学报(工学版), 2015, 49(1): 63-68.
[12] 项贻强,刘成熹,唐国斌,陈雪奖,吴天真,罗晓峰. 计算独柱墩帽梁承载力的改进撑杆-系杆模型[J]. J4, 2012, 46(7): 1248-1254.
[13] 王振华, 董石麟, 田伟, 袁行飞. 索穹顶与单层网壳组合结构的模型试验研究[J]. J4, 2010, 44(8): 1608-1614.
[14] 李斌, 杨智春, 王乐, 等. 利用附加质量的设计参数型模型修正方法[J]. J4, 2009, 43(7): 1297-1301.
[15] 叶雨清 陈勇 孙炳楠 楼文娟 俞菊虎. 钱江四桥健康监测特征指标趋势分析[J]. J4, 2009, 43(2): 394-400.