土木工程、交通工程 |
|
|
|
|
基于序贯设计和高斯过程模型的结构动力不确定性量化方法 |
万华平1,2( ),张梓楠1,3,周家伟2,3,任伟新4 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 浙江大学平衡建筑研究中心,浙江 杭州 310028 3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028 4. 深圳大学 土木与交通工程学院,广东 深圳 518060 |
|
Uncertainty quantification of structural dynamic characteristics based on sequential design and Gaussian process model |
Huaping WAN1,2( ),Zinan ZHANG1,3,Jiawei ZHOU2,3,Weixin REN4 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China 3. The Architectural Design and Research Institute of Zhejiang University, Hangzhou 310028, China 4. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China |
引用本文:
万华平,张梓楠,周家伟,任伟新. 基于序贯设计和高斯过程模型的结构动力不确定性量化方法[J]. 浙江大学学报(工学版), 2024, 58(3): 529-536.
Huaping WAN,Zinan ZHANG,Jiawei ZHOU,Weixin REN. Uncertainty quantification of structural dynamic characteristics based on sequential design and Gaussian process model. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 529-536.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.010
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I3/529
|
1 |
MACE B R, WORDEN K, MANSON G Uncertainty in structural dynamics[J]. Journal of Sound and Vibration, 2005, 288 (3): 423- 429
doi: 10.1016/j.jsv.2005.07.014
|
2 |
王泓晖, 房鑫, 李德江, 等 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报: 工学版, 2021, 55 (2): 280- 288 WANG Honghui, FANG Xin, LI Dejiang, et al Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 280- 288
|
3 |
骆勇鹏, 刘景良, 韩建平, 等 自助法的改进及在结构参数不确定性量化和传递分析中的应用[J]. 振动工程学报, 2020, 33 (4): 679- 687 LUO Yongpeng, LIU Jingliang, HAN Jianping, et al The improvement of Bootstrap method and its application in structure parameter uncertainty quantification and propagation[J]. Journal of Vibration Engineering, 2020, 33 (4): 679- 687
doi: 10.16385/j.cnki.issn.1004-4523.2020.04.005
|
4 |
SZÉKELY G S, SCHUËLLER G I Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191 (8−10): 799- 816
doi: 10.1016/S0045-7825(01)00290-0
|
5 |
张雷, 张立华, 王家序, 等 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报: 工学版, 2019, 53 (4): 638- 644 ZHANG Lei, ZHANG Lihua, WANG Jiaxu, et al Analysis of stress and stiffness of flexspline based on response surface method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 638- 644
|
6 |
SAHA S K, MATSAGAR V, CHAKRABORTY S Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models[J]. Probabilistic Engineering Mechanics, 2016, 43: 20- 35
doi: 10.1016/j.probengmech.2015.10.008
|
7 |
GUO L, LIU Y, ZHOU T Data-driven polynomial chaos expansions: a weighted least-square approximation[J]. Journal of Computational Physics, 2019, 381: 129- 145
doi: 10.1016/j.jcp.2018.12.020
|
8 |
LU J, ZHAN Z, APLEY D W, et al Uncertainty propagation of frequency response functions using a multi-output Gaussian Process model[J]. Computers and Structures, 2019, 217: 1- 17
|
9 |
万华平, 任伟新, 钟剑 桥梁结构固有频率不确定性量化的高斯过程模型方法[J]. 中国科学: 技术科学, 2016, 46 (9): 919- 925 WAN Huaping, REN Weixin, ZHONG Jian Gaussian process model-based approach for uncertainty quantification of natural frequencies of bridge[J]. Scientia Sinica: Technologica, 2016, 46 (9): 919- 925
doi: 10.1360/N092016-00191
|
10 |
WAN H P, REN W X, TODD M D An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions[J]. International Journal for Numerical Methods in Engineering, 2017, 109 (5): 739- 760
doi: 10.1002/nme.5305
|
11 |
LOCKWOOD B, MAVRIPLIS D Gradient-based methods for uncertainty quantification in hypersonic flows[J]. Computers and Fluids, 2013, 85: 27- 38
doi: 10.1016/j.compfluid.2012.09.003
|
12 |
SANTNER T J, WILLIAMS B J, NOTZ W I, et al. The design and analysis of computer experiments [M]. New York: Springer, 2003, 145-200.
|
13 |
LIN D K J, SIMPSON T W, CHEN W Sampling strategies for computer experiments: design and analysis[J]. International Journal of Reliability and Applications, 2001, 2 (3): 209- 240
|
14 |
MCKAY M D, BECKMAN R J, CONOVER W J A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42 (1): 55- 61
doi: 10.1080/00401706.2000.10485979
|
15 |
于晓辉, 钱凯, 吕大刚 基于随机 Pushdown 方法的钢筋混凝土框架结构抗连续倒塌能力概率评估[J]. 建筑结构学报, 2017, 38 (2): 83- 89 YU Xiaohui, QIAN Kai, LV Dagang Probabilistic assessment of structural resistance of RC frame structures against progressive collapse using random Pushdown analysis[J]. Journal of Building Structure, 2017, 38 (2): 83- 89
|
16 |
WAN H P, REN W X Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian process meta-model[J]. Journal of Structural Engineering, 2015, 141 (6): 04014164
doi: 10.1061/(ASCE)ST.1943-541X.0001108
|
17 |
KALAGNANAM J R, DIWEKAR U M An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39 (3): 308- 319
doi: 10.1080/00401706.1997.10485122
|
18 |
JIN R, CHEN W, SUDJIANTO A. On sequential sampling for global metamodeling in engineering design[C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal: QC, 2002, 36223: 539-548.
|
19 |
SACKS J, WELCH W J, MITCHELL T J, et al Design and analysis of computer experiments[J]. Statistical Science, 1989, 4 (4): 409- 423
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|