Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 529-536    DOI: 10.3785/j.issn.1008-973X.2024.03.010
土木工程、交通工程     
基于序贯设计和高斯过程模型的结构动力不确定性量化方法
万华平1,2(),张梓楠1,3,周家伟2,3,任伟新4
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江大学平衡建筑研究中心,浙江 杭州 310028
3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
4. 深圳大学 土木与交通工程学院,广东 深圳 518060
Uncertainty quantification of structural dynamic characteristics based on sequential design and Gaussian process model
Huaping WAN1,2(),Zinan ZHANG1,3,Jiawei ZHOU2,3,Weixin REN4
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. The Architectural Design and Research Institute of Zhejiang University, Hangzhou 310028, China
4. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
 全文: PDF(1727 KB)   HTML
摘要:

将直接基于有限元模型的蒙特卡罗方法用于结构动力不确定性量化较耗时,为此采用高斯过程模型取代耗时的有限元模型,提高不确定性量化的计算效率. 提出基于序贯设计和高斯过程模型的结构动力不确定性量化方法,通过样本填充准则迭代,选择最优样本点建立自适应高斯过程模型,提升动力不确定性量化精度. 在建立的自适应高斯过程模型框架下,动力特性统计矩的高维积分转化为一维积分,进而进行解析计算. 采用2个数学函数来展示自适应高斯模型的拟合过程,高斯过程模型的拟合精度随着迭代次数增加而明显增加. 将所提方法应用于柱面网壳的固有频率统计矩计算,计算精度与蒙特卡罗法的结果相当. 与传统高斯过程模型对比,所提算法的计算效率优势明显,表明所提方法具有计算精度高和效率高的优势.

关键词: 结构动力特性不确定性量化序贯设计高斯过程模型统计矩    
Abstract:

The Monte Carlo method, which is based on finite element models directly, is extremely time-consuming for quantifying the uncertainty of structural dynamic characteristics. To address the above issue, Gaussian process model was introduced to replace the time-intensive finite element model to enhance the computational efficiency of uncertainty quantification. A method for uncertainty quantification of structural dynamic characteristics was proposed based on sequential design and Gaussian process models. Optimal sample points were selected to establish an adaptive Gaussian process model through iterative sample enrichment criteria, thereby improving the accuracy of uncertainty quantification. The high-dimensional integration of statistical moments of dynamic characteristics was transformed into one-dimensional integration under the framework of the established adaptive Gaussian process model, allowing for analytical computation. Two mathematical functions were used to illustrate the fitting process of the adaptive Gaussian model, indicating a noticeable increase of the fitting accuracy with the increase of the number of iterations. Subsequently, the proposed method was applied to the calculation of the statistical moments of natural frequencies for a cylindrical shell, with computational accuracy comparable to that of the Monte Carlo method. The proposed method demonstrated significant advantage in computational accuracy and efficiency, in comparison with the traditional Gaussian process models.

Key words: structural dynamic characteristics    uncertainty quantification    sequential design    Gaussian process model    statistical moment
收稿日期: 2022-09-07 出版日期: 2024-03-05
CLC:  TB 114  
基金资助: 国家重点研发计划资助项目(2021YFF0501001);浙江省重点研发计划资助项目(2021C03154);国家自然科学基金资助项目(51878235).
作者简介: 万华平(1986—),男,研究员,博士,从事结构健康监测及结构不确定性分析研究. orcid.org/0000-0001-6111-9441.E-mail:hpwan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
万华平
张梓楠
周家伟
任伟新

引用本文:

万华平,张梓楠,周家伟,任伟新. 基于序贯设计和高斯过程模型的结构动力不确定性量化方法[J]. 浙江大学学报(工学版), 2024, 58(3): 529-536.

Huaping WAN,Zinan ZHANG,Jiawei ZHOU,Weixin REN. Uncertainty quantification of structural dynamic characteristics based on sequential design and Gaussian process model. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 529-536.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.010        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/529

图 1  一维函数自适应GPM的迭代过程
图 2  二维函数自适应GPM的迭代过程
图 3  二维函数自适应GPM迭代过程的MSE
图 4  双层柱面网壳
图 5  双层柱面网壳有限元模型和前4阶振型
不确定参数分布均值变异系数
钢管半径均匀分布40 mm0.05
钢材密度正态分布7 850 kg/m30.10
钢材弹性模量对数正态分布210 GPa0.10
表 1  不确定性参数的统计特征
方法均值方差均值相对误差/%方差相对误差/%计算时间/s
1)注:括号内的数字“27”、“44”分别指自适应GPM和GPM建模所需的样本个数.
自适应GPM (27)1)22.424 42.564 10.003 70.361 514.3
GPM (44)22.424 42.559 00.003 60.561 420.1
MCS22.425 22.573 41 789.2
表 2  自适应GPM、GPM和MCS法的均值和方差计算结果对比(第1阶固有频率)
方法均值方差均值相对误差/%方差相对误差/%计算时间/s
自适应GPM (27)24.447 63.047 50.003 70.361 614.3
GPM (44)22.447 73.041 50.003 60.561 420.1
MCS24.448 53.058 71 789.2
表 3  自适应GPM、GPM和MCS法的均值和方差计算结果对比(第2阶固有频率)
方法均值方差均值相对误差/%方差相对误差/%计算时间/s
自适应GPM (27)27.237 03.782 80.003 70.361 614.3
GPM (44)27.237 13.775 20.003 60.561 520.1
MCS27.238 03.796 51 789.2
表 4  自适应GPM、GPM和MCS法的均值和方差计算结果对比(第3阶固有频率)
方法均值方差均值相对误差/%方差相对误差/%计算时间/s
自适应GPM (27)29.896 94.557 60.003 30.362 214.3
GPM (44)29.896 84.548 50.003 80.561 720.1
MCS29.897 94.574 21 789.2
表 5  自适应GPM、GPM和MCS法的均值和方差计算结果对比(第4阶固有频率)
1 MACE B R, WORDEN K, MANSON G Uncertainty in structural dynamics[J]. Journal of Sound and Vibration, 2005, 288 (3): 423- 429
doi: 10.1016/j.jsv.2005.07.014
2 王泓晖, 房鑫, 李德江, 等 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报: 工学版, 2021, 55 (2): 280- 288
WANG Honghui, FANG Xin, LI Dejiang, et al Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 280- 288
3 骆勇鹏, 刘景良, 韩建平, 等 自助法的改进及在结构参数不确定性量化和传递分析中的应用[J]. 振动工程学报, 2020, 33 (4): 679- 687
LUO Yongpeng, LIU Jingliang, HAN Jianping, et al The improvement of Bootstrap method and its application in structure parameter uncertainty quantification and propagation[J]. Journal of Vibration Engineering, 2020, 33 (4): 679- 687
doi: 10.16385/j.cnki.issn.1004-4523.2020.04.005
4 SZÉKELY G S, SCHUËLLER G I Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191 (8−10): 799- 816
doi: 10.1016/S0045-7825(01)00290-0
5 张雷, 张立华, 王家序, 等 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报: 工学版, 2019, 53 (4): 638- 644
ZHANG Lei, ZHANG Lihua, WANG Jiaxu, et al Analysis of stress and stiffness of flexspline based on response surface method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 638- 644
6 SAHA S K, MATSAGAR V, CHAKRABORTY S Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models[J]. Probabilistic Engineering Mechanics, 2016, 43: 20- 35
doi: 10.1016/j.probengmech.2015.10.008
7 GUO L, LIU Y, ZHOU T Data-driven polynomial chaos expansions: a weighted least-square approximation[J]. Journal of Computational Physics, 2019, 381: 129- 145
doi: 10.1016/j.jcp.2018.12.020
8 LU J, ZHAN Z, APLEY D W, et al Uncertainty propagation of frequency response functions using a multi-output Gaussian Process model[J]. Computers and Structures, 2019, 217: 1- 17
9 万华平, 任伟新, 钟剑 桥梁结构固有频率不确定性量化的高斯过程模型方法[J]. 中国科学: 技术科学, 2016, 46 (9): 919- 925
WAN Huaping, REN Weixin, ZHONG Jian Gaussian process model-based approach for uncertainty quantification of natural frequencies of bridge[J]. Scientia Sinica: Technologica, 2016, 46 (9): 919- 925
doi: 10.1360/N092016-00191
10 WAN H P, REN W X, TODD M D An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions[J]. International Journal for Numerical Methods in Engineering, 2017, 109 (5): 739- 760
doi: 10.1002/nme.5305
11 LOCKWOOD B, MAVRIPLIS D Gradient-based methods for uncertainty quantification in hypersonic flows[J]. Computers and Fluids, 2013, 85: 27- 38
doi: 10.1016/j.compfluid.2012.09.003
12 SANTNER T J, WILLIAMS B J, NOTZ W I, et al. The design and analysis of computer experiments [M]. New York: Springer, 2003, 145-200.
13 LIN D K J, SIMPSON T W, CHEN W Sampling strategies for computer experiments: design and analysis[J]. International Journal of Reliability and Applications, 2001, 2 (3): 209- 240
14 MCKAY M D, BECKMAN R J, CONOVER W J A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42 (1): 55- 61
doi: 10.1080/00401706.2000.10485979
15 于晓辉, 钱凯, 吕大刚 基于随机 Pushdown 方法的钢筋混凝土框架结构抗连续倒塌能力概率评估[J]. 建筑结构学报, 2017, 38 (2): 83- 89
YU Xiaohui, QIAN Kai, LV Dagang Probabilistic assessment of structural resistance of RC frame structures against progressive collapse using random Pushdown analysis[J]. Journal of Building Structure, 2017, 38 (2): 83- 89
16 WAN H P, REN W X Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian process meta-model[J]. Journal of Structural Engineering, 2015, 141 (6): 04014164
doi: 10.1061/(ASCE)ST.1943-541X.0001108
17 KALAGNANAM J R, DIWEKAR U M An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39 (3): 308- 319
doi: 10.1080/00401706.1997.10485122
18 JIN R, CHEN W, SUDJIANTO A. On sequential sampling for global metamodeling in engineering design[C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal: QC, 2002, 36223: 539-548.
19 SACKS J, WELCH W J, MITCHELL T J, et al Design and analysis of computer experiments[J]. Statistical Science, 1989, 4 (4): 409- 423
[1] 李颖,王冠雄,闫伟,赵营鸽,马重蕾. 改进的稀疏网格配点法对EIT电导率分布的不确定性量化[J]. 浙江大学学报(工学版), 2022, 56(3): 613-621.