计算机技术、通信技术 |
|
|
|
|
基于异质图卷积神经网络的论点对抽取模型 |
刘议丹( ),朱小飞*( ),尹雅博 |
重庆理工大学 计算机科学与工程学院,重庆 400054 |
|
Heterogeneous graph convolutional neural network for argument pair extraction |
Yidan LIU( ),Xiaofei ZHU*( ),Yabo YIN |
College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China |
1 |
EGER S, DAXENBERGER J, GUREVYCH I. Neural end-to-end learning for computational argumentation mining [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 11-22.
|
2 |
KURIBAYASHI T, OUCHI H, INOUE N, et al. An empirical study of span representations in argumentation structure parsing [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: ACL, 2019: 4691-4698.
|
3 |
MORIO G, FUJITA K. End-to-end argument mining for discussion threads based on parallel constrained pointer architecture [C]// Proceedings of the 5th Workshop on Argument Mining. Brussels: ACL, 2018: 11-21.
|
4 |
CHAKRABARTY T, HIDEY C, MURESAN S, et al. AMPERSAND: argument mining for PERSuAsive oNline discussions [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 2933–2943.
|
5 |
魏忠钰 计算论辩技术: 迈向智能人类辩手之路[J]. 世界科学, 2023, (5): 46- 49 WEI Zhongyu Computational argumentation techniques: toward the path of intelligent human debaters[J]. World Science, 2023, (5): 46- 49
doi: 10.3969/j.issn.1000-0968.2023.05.013
|
6 |
CHENG L, BING L, YU Q, et al. APE: argument pair extraction from peer review and rebuttal via multi-task learning [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: ACL, 2020: 7000-7011.
|
7 |
CHENG L, WU T, BING L, et al. Argument pair extraction via attention-guided multi-layer multi-cross encoding [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: ACL, 2021: 6341-6353.
|
8 |
BAO J, LIANG B, SUN J, et al. Argument pair extraction with mutual guidance and inter-sentence relation graph [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana: ACL, 2021: 3923-3934.
|
9 |
BAO J, SUN J, ZHU Q, et al. Have my arguments been replied to? argument pair extraction as machine reading comprehension [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: ACL, 2022: 29-35.
|
10 |
WALKER V, FOERSTER D, PONCE J M, et al. Evidence types, credibility factors, and patterns or soft rules for weighing conflicting evidence: argument mining in the context of legal rules governing evidence assessment [C]// Proceedings of the 5th Workshop on Argument Mining. Brussels: ACL, 2018: 68-78.
|
11 |
LE D T, NGUYEN C T, NGUYEN K A. Dave the debater: a retrieval-based and generative argumentative dialogue agent [C]// Proceedings of the 5th Workshop on Argument Mining. Brussels: ACL, 2018: 121-130.
|
12 |
ZHANG F, LITMAN D. Using context to predict the purpose of argumentative writing revisions [C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: ACL, 2016: 1424-1430.
|
13 |
JI L, WEI Z, LI J, et al. Discrete argument representation learning for interactive argument pair identification [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. [S. l. ]: ACL, 2016: 5467-5478.
|
14 |
YUAN J, WEI Z, ZHAO D, et al. Leveraging argumentation knowledge graph for interactive argument pair identification [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: ACL, 2021: 2310-2319.
|
15 |
SHI L, GIUNCHIGLIA F, SONG R, et al. A simple contrastive learning framework for interactive argument pair identification via argument-context extraction [C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi: ACL, 2022: 10027-10039.
|
16 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22). https://arxiv.org/abs/1609.02907.
|
17 |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2017-10-30)[2023-06-20]. https://arxiv.org/abs/1710.10903.
|
18 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// The Semantic Web: 15th International Conference, Extended Semantic Web Conference. Heraklion: Springer, 2018: 593-607.
|
19 |
WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: ACL, 2020: 3229-3238.
|
20 |
HU L, YANG T, SHI C, et al. Heterogeneous graph attention networks for semi-supervised short text classification [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 4821-4830.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st lnternational Conference on Neural lnformation Processing Systems. California: Curran Associates Inc., 2017: 6000-6010.
|
22 |
DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics . Minneapolis: ACL, 2019: 4171-4186.
|
23 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958
|
24 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
25 |
SU J, LU Y, PAN S, et al. Roformer: enhanced transformer with rotary position embedding [EB/OL]. (2021-04-09). https://arxiv.org/abs/2104.09864.
|
26 |
LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data [C]// Proceedings of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 2001: 282-289.
|
27 |
BELTAGY I, PETERS M E, COHAN A. Longformer: the long-document transformer [EB/OL]. (2020-05-10). https://arxiv.org/abs/2004.05150.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|