Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 1977-1986    DOI: 10.3785/j.issn.1008-973X.2023.10.007
计算机技术、自动化技术     
基于超图卷积神经网络的多行为感知服务推荐方法
陆佳炜1,2(),李端倪1,王策策3,徐俊1,肖刚1,2,*()
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023
2. 中国计量大学 机电工程学院,浙江 杭州 310018
3. 中国计量大学 信息工程学院,浙江 杭州 310018
Multi-behavior aware service recommendation based on hypergraph graph convolution neural network
Jia-wei LU1,2(),Duan-ni LI1,Ce-ce WANG3,Jun XU1,Gang XIAO1,2,*()
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
3. College of Information Engineering, China Jiliang University, Hangzhou 310018, China
 全文: PDF(1380 KB)   HTML
摘要:

针对现有服务推荐方法中高阶服务特征提取不够充分的问题,提出基于超图卷积神经网络的多行为感知服务推荐方法(MBSRHGNN). 该方法根据服务交互类型和服务组合信息构建多重超图,基于谱分解理论和多重超图的功能结构特性以设计双通道超图卷积网络. 利用切比雪夫多项式近似超图卷积核来降低计算复杂度;在超图卷积过程中,结合多行为推荐方法和自注意力机制度量多行为交互之间的重要性差异,提出HG-DiffPool超图池化方法来降低特征维度;通过融合服务嵌入向量和超图信号,学习不同服务的推荐概率分布;爬取真实服务数据,构造不同稀疏度的数据集进行实验. 实验结果表明,所提的MBSRHGNN服务推荐方法能够适应数据高度稀疏的推荐场景,并且在推荐精确度和相关性上的表现优于现有基线方法.

关键词: 服务推荐图神经网络超图学习多行为推荐注意力机制    
Abstract:

A multi-behavior aware service recommendation method based on hypergraph graph convolutional neural network (MBSRHGNN) was proposed to resolve the problem of insufficient high-order service feature extraction in existing service recommendation methods. A multi-hypergraph was constructed according to user-service interaction types and service mashups. A dual-channel hypergraph convolutional network was designed based on the spectral decomposition theory with functional and structural properties of multi-hypergraph. Chebyshev polynomial was used to approximate hypergraph convolution kernel to reduce computational complexity. Self-attention mechanism and multi-behavior recommendation methods were combined to measure the importance difference between multi-behavior interactions during the hypergraph convolution process. A hypergraph pooling method named HG-DiffPool was proposed to reduce the feature dimensionality. The probability distribution for recommending different services was learned by integrating service embedding vector and hypergraph signals. Real service data was obtained by the crawler and used to construct datasets with different sparsity for experiments. Experimental results showed that the MBSRHGNN method could adapt to recommendation scenario with highly sparse data, and was superior to the existing baseline methods in accuracy and relevance.

Key words: service recommendation    graph neural network    hypergraph learning    multi-behavior recommendation    attention mechanism
收稿日期: 2023-02-01 出版日期: 2023-10-18
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(61976193);国家社会科学基金资助项目(22BMZ038);浙江省重点研发计划资助项目(2021C03136)
通讯作者: 肖刚     E-mail: viivan@zjut.edu.cn;xg@zjut.edu.cn
作者简介: 陆佳炜(1981—),男,副教授,从事服务计算研究. orcid.org/0000-0003-0475-0194. E-mail: viivan@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陆佳炜
李端倪
王策策
徐俊
肖刚

引用本文:

陆佳炜,李端倪,王策策,徐俊,肖刚. 基于超图卷积神经网络的多行为感知服务推荐方法[J]. 浙江大学学报(工学版), 2023, 57(10): 1977-1986.

Jia-wei LU,Duan-ni LI,Ce-ce WANG,Jun XU,Gang XIAO. Multi-behavior aware service recommendation based on hypergraph graph convolution neural network. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1977-1986.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.007        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1977

图 1  MBSRHGNN模型总体架构
图 2  行为感知超图上的自注意力机制
数据集 μ ε λ l ? ρ Z
稀疏数据集 3516 6206 13329 42.35 523 0.039 [view, follow,choose]
稠密数据集 11032 6206 13329 43.46 3047 0.230 [view, follow,choose]
表 1  实验中数据集的统计信息
模型 稀疏数据集 稠密数据集
HR@5 NDCG@5 HR@10 NDCG@10 MRR HR@5 NDCG@5 HR@10 NDCG@10 MRR
AFMRec 0.381 0.358 0.384 0.352 0.372 0.412 0.407 0.428 0.404 0.383
WR-MSN 0.335 0.312 0.321 0.303 0.314 0.465 0.452 0.442 0.431 0.428
DHCN 0.342 0.303 0.352 0.323 0.328 0.383 0.336 0.371 0.342 0.334
HyperRec 0.481 0.474 0.513 0.489 0.452 0.512 0.498 0.527 0.515 0.482
MBHT 0.482 0.436 0.509 0.462 0.474 0.528 0.477 0.542 0.496 0.506
MB-GCN 0.387 0.322 0.419 0.349 0.364 0.363 0.311 0.392 0.327 0.339
MBSRHGNN 0.504 0.489 0.547 0.507 0.497 0.572 0.542 0.596 0.556 0.541
IMP/% 4.5 3.2 4.8 3.8 4.9 8.3 8.8 5.6 7.9 7.8
表 2  MBSRHCNN模型与基线方法的对比实验结果
图 3  多重超图结构消融实验结果
图 4  不同特征维度设置下的服务推荐性能表现
1 曹步清, 肖巧翔, 张祥平, 等 融合 SOM 功能聚类与 DeepFM 质量预测的 API 服务推荐方法[J]. 计算机学报, 2019, 42 (6): 1367- 1383
CAO Bu-qing, XIAO Qiao-xiang, ZHANG Xiang-ping, et al An API service recommendation method via combining self-organization map-based functionality clustering and deep factorization machine-based quality prediction[J]. Chinese Journal of Computers, 2019, 42 (6): 1367- 1383
doi: 10.11897/SP.J.1016.2019.01367
2 ZHENG Z, MA H, LYU M R, et al. WSRec: a collaborative filtering based web service recommender system [C]// IEEE International Conference on Web Services. Los Angeles: IEEE, 2009: 437-444.
3 JIANG Y, LIU J, TANG M, et al. An effective web service recommendation method based on personalized collaborative filtering [C]// IEEE International Conference on Web Services. Washington: IEEE, 2011: 211-218.
4 AGARWAL N, SIKKA G, AWASTHI L K Enhancing web service clustering using Length Feature Weight Method for service description document vector space representation[J]. Expert Systems with Applications, 2020, 161: 113682
doi: 10.1016/j.eswa.2020.113682
5 陆佳炜, 吴涵, 张元鸣, 等 融合功能语义关联计算与密度峰值检测的Mashup服务聚类方法[J]. 计算机学报, 2021, 44 (7): 1501- 1516
LU Jia-wei, WU Han, ZHANG Yuan-ming, et al Mashup service clustering method via integrating functional semantic association calculation and density peak detection[J]. Chinese Journal of Computers, 2021, 44 (7): 1501- 1516
6 陆佳炜, 郑嘉弘, 李端倪, 等 面向服务聚类的短文本优化主题模型[J]. 浙江大学学报: 工学版, 2021, 56 (12): 2416- 2425
LU Jia-wei, ZHENG Jia-hong, LI Duan-ni, et al Short text optimized topic model for service clustering[J]. Journal of Zhejian University: Engineering Science, 2021, 56 (12): 2416- 2425
7 CAO Y, LIU J, SHI M, et al. Service recommendation based on attentional factorization machine [C]// IEEE International Conference on Services Computing. Milan: IEEE, 2019: 189-196.
8 XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Virtual Event: AAAI, 2021: 4503-4511.
9 WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 346-353.
10 FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 3558-3565.
11 JIN B, GAO C, HE X, et al. Multi-behavior recommendation with graph convolutional networks [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an: ACM, 2020: 659-668.
12 YANG Y, HUANG C, XIA L, et al. Multi-behavior hypergraph-enhanced transformer for sequential recommendation [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2022: 2263-2274.
13 XIA L, XU Y, HUANG C, et al. Graph meta network for multi-behavior recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event: ACM, 2021: 757-766.
14 BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and deep locally connected networks on graphs [C]// International Conference on Learning Representations. Banff: [s.n.], 2014: 1-14.
15 WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. Toulon: [s.n.], 2017: 1-14.
16 CHEUNG M, SHI J, JIANG L, et al. Pooling in graph convolutional neural networks [C]// 53rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE, 2019: 462-466.
17 YING Z, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: NIPS, 2018: 4805-4815.
18 LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
[1] 李海烽,张雪英,段淑斐,贾海蓉,Huizhi Liang . 融合生成对抗网络与时间卷积网络的普通话情感识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1865-1875.
[2] 赵小强,王泽,宋昭漾,蒋红梅. 基于动态注意力网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2023, 57(8): 1487-1494.
[3] 王慧欣,童向荣. 融合知识图谱的推荐系统研究进展[J]. 浙江大学学报(工学版), 2023, 57(8): 1527-1540.
[4] 宋秀兰,董兆航,单杭冠,陆炜杰. 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1636-1643.
[5] 李晓艳,王鹏,郭嘉,李雪,孙梦宇. 基于双注意力机制的多分支孪生网络目标跟踪[J]. 浙江大学学报(工学版), 2023, 57(7): 1307-1316.
[6] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[7] 韩俊,袁小平,王准,陈烨. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.
[8] 项学泳,王力,宗文鹏,李广云. ASIS模块支持下融合注意力机制KNN的点云实例分割算法[J]. 浙江大学学报(工学版), 2023, 57(5): 875-882.
[9] 苏育挺,陆荣烜,张为. 基于注意力和自适应权重的车辆重识别算法[J]. 浙江大学学报(工学版), 2023, 57(4): 712-718.
[10] 卞佰成,陈田,吴入军,刘军. 基于改进YOLOv3的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(4): 735-743.
[11] 程艳芬,吴家俊,何凡. 基于关系门控图卷积网络的方面级情感分析[J]. 浙江大学学报(工学版), 2023, 57(3): 437-445.
[12] 曾耀,高法钦. 基于改进YOLOv5的电子元件表面缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(3): 455-465.
[13] 周青松,蔡晓东,刘家良. 结合社交影响和长短期偏好的个性化推荐算法[J]. 浙江大学学报(工学版), 2023, 57(3): 495-502.
[14] 曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
[15] 张京京,张兆功,许鑫. 融合图增强和采样策略的图卷积协同过滤模型[J]. 浙江大学学报(工学版), 2023, 57(2): 243-251.