计算机与控制工程 |
|
|
|
|
融合注意力的滤波器组双视图图卷积运动想象脑电分类 |
吴书晗1( ),王丹1,*( ),陈远方2,贾子钰3,张越棋1,许萌1 |
1. 北京工业大学 信息学部,北京 100124 2. 北京机械设备研究所,北京 100854 3. 中国科学院自动化研究所脑网络组研究中心,北京 100190 |
|
Attention-fused filter bank dual-view graph convolution motor imagery EEG classification |
Shuhan WU1( ),Dan WANG1,*( ),Yuanfang CHEN2,Ziyu JIA3,Yueqi ZHANG1,Meng XU1 |
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China 2. Beijing Institute of Machinery and Equipment, Beijing 100854, China 3. Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
Shuhan WU,Dan WANG,Yuanfang CHEN,Ziyu JIA,Yueqi ZHANG,Meng XU. Attention-fused filter bank dual-view graph convolution motor imagery EEG classification. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1326-1335.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.002
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1326
|
1 |
刘近贞, 叶方方, 熊慧 基于卷积神经网络的多类运动想象脑电信号识别[J]. 浙江大学学报: 工学版, 2021, 55 (11): 2054- 2066 LIU Jinzhen, YE Fangfang, XIONG Hui Recognition of multi-class motor imagery EEG signals based on convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (11): 2054- 2066
|
2 |
ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35: 14681- 14722
doi: 10.1007/s00521-021-06352-5
|
3 |
ANG K K, CHIN Z Y, ZHANG H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface [C]// 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) . Hong Kong: IEEE, 2008: 2390–2397.
|
4 |
SALAMI A, ANDREU-PEREZ J, GILLMEISTER H EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification[J]. IEEE Access, 2022, 10: 36672- 36685
doi: 10.1109/ACCESS.2022.3161489
|
5 |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
|
6 |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
|
7 |
JIA Z, LIN Y, WANG J, et al. GraphSleepNet: adaptive spatial-temporal graph convolutional networks for sleep stage classification [C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence . [S. l.]: ACM, 2020: 1324–1330.
|
8 |
李珍琦, 王晶, 贾子钰, 等 融合注意力的多维特征图卷积运动想象分类[J]. 计算机科学与探索, 2022, 16 (9): 2050- 2060 LI Zhenqi, WANG Jing, JIA Ziyu, et al Attention-based multi-dimensional feature graph convolutional network for motor imagery classification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (9): 2050- 2060
doi: 10.3778/j.issn.1673-9418.2103079
|
9 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11534–11542.
|
10 |
徐冰冰, 岑科廷, 黄俊杰, 等 图卷积神经网络综述[J]. 计算机学报, 2020, 43 (5): 755- 780 TU Bingbing, CEN Keting, HUANG Junjie, et al A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43 (5): 755- 780
doi: 10.11897/SP.J.1016.2020.00755
|
11 |
ZHANG D, CHEN K, JIAN D, et al Motor imagery classification via temporal attention cues of graph embedded EEG signals[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (9): 2570- 2579
doi: 10.1109/JBHI.2020.2967128
|
12 |
SUN B, ZHANG H, WU Z, et al Adaptive spatiotemporal graph convolutional networks for motor imagery classification[J]. IEEE Signal Processing Letters, 2021, 28: 219- 223
doi: 10.1109/LSP.2021.3049683
|
13 |
HOU Y, JIA S, LUN X, et al Deep feature mining via the attention-based bidirectional long short term memory graph convolutional neural network for human motor imagery recognition[J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 706229
doi: 10.3389/fbioe.2021.706229
|
14 |
HOU Y, JIA S, LUN X, et al. GCNs-Net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals [J]. IEEE Transactions on Neural Networks and Learning Systems , 2022: 1–12.
|
15 |
MA W, WANG C, SUN X, et al MBGA-Net: a multi-branch graph adaptive network for individualized motor imagery EEG classification[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 107641
doi: 10.1016/j.cmpb.2023.107641
|
16 |
BAHDANAU D, CHO K H, BENGIO Y. Neural machine translation by jointly learning to align and translate [C]// 3rd International Conference on Learning Representations 2015 . San Diego: [s. n.], 2015.
|
17 |
LI D, XU J, WANG J, et al A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28 (12): 2615- 2626
doi: 10.1109/TNSRE.2020.3037326
|
18 |
LI Y, GUO L, LIU Y, et al A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1534- 1545
doi: 10.1109/TNSRE.2021.3099908
|
19 |
YU Z, CHEN W, ZHANG T Motor imagery EEG classification algorithm based on improved lightweight feature fusion network[J]. Biomedical Signal Processing and Control, 2022, 75: 103618
doi: 10.1016/j.bspc.2022.103618
|
20 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Proceedings of the 30th Information Processing Systems . Barcelona: [s. n.], 2016: 3844–3852.
|
21 |
TANGERMANN M, MÜLLER K R, AERTSEN A, et al Review of the BCI competition IV[J]. Frontiers in Neuroscience, 2012, 6: 55
|
22 |
LEE M H, KWON O Y, KIM Y J, et al EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy[J]. GigaScience, 2019, 8 (5): giz002
doi: 10.1093/gigascience/giz002
|
23 |
LIU K, YANG M, YU Z, et al FBMSNet: a filter-bank multi-scale convolutional neural network for EEG-based motor imagery decoding[J]. IEEE Transactions on Biomedical Engineering, 2022, 70 (2): 436- 445
|
24 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2017-01-30)[2023-08-20]. https://arxiv.org/pdf/1412.6980.pdf.
|
25 |
WU H, NIU Y, LI F, et al A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification[J]. Frontiers in Neuroscience, 2019, 13: 1275
doi: 10.3389/fnins.2019.01275
|
26 |
MANE R, ROBINSON N, VINOD A P, et al. A multi-view CNN with novel variance layer for motor imagery brain computer interface [C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . Montreal: IEEE, 2020.
|
27 |
BORRA D, FANTOZZI S, MAGOSSO E Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination[J]. Neural Networks, 2020, 129: 55- 74
doi: 10.1016/j.neunet.2020.05.032
|
28 |
CHEN J, YI W, WANG D. Filter bank Sinc-ShallowNet with EMD-based mixed noise adding data augmentation for motor imagery classification [C]// 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . Mexico: IEEE, 2021: 5837–5841.
|
29 |
VAN DER MAATEN L, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579- 2605
|
30 |
MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 3139–3148.
|
31 |
LIU Y, SHAO Z, TENG Y, et al. NAM: normalization-based attention module [EB/OL]. (2021-11-24)[2023-08-20]. https://arxiv.org/pdf/2111.12419.pdf.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|