计算机技术 |
|
|
|
|
基于边界点估计与稀疏卷积神经网络的三维点云语义分割 |
杨军1,2( ),张琛1 |
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 2. 兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070 |
|
Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network |
Jun YANG1,2( ),Chen ZHANG1 |
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China |
1 |
SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 10526−10535.
|
2 |
CHABRA R, LENSSEN J, ILG E, et al. Deep local shapes: learning local SDF priors for detailed 3D reconstruction [C]// Proceedings of the European Conference on Computer Vision . Glasgow: Springer, 2020: 608−625.
|
3 |
HU W, ZHAO H, JIANG L, et al. Bidirectional projection network for cross dimension scene understanding [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . [s. l.]: IEEE, 2021: 14373−14382.
|
4 |
DANG J S, YANG J LHPHGCNN: lightweight hierarchical parallel heterogeneous group convolutional neural networks for point cloud scene prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 18903- 18915
doi: 10.1109/TITS.2022.3167910
|
5 |
QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 77−85.
|
6 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Advances in Neural Information Processing Systems. Long Beach: MIT Press, 2017: 5099−5108.
|
7 |
LAWIN F J, DANELLJAN M, TOSTEBERG P, et al. Deep projective 3D semantic segmentation [C]// International Conference on Computer Analysis of Images and Patterns . Ystad: Springer, 2017: 95−107.
|
8 |
BOULCH A, GUERRY J, SAUX B, et al SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computer and Graphics, 2018, 71: 189- 198
doi: 10.1016/j.cag.2017.11.010
|
9 |
GUERRY J, BOULCH A, LE S, et al. SnapNet-R: consistent 3D multi-view semantic labeling for robotics [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 669−678.
|
10 |
CORTINHAL T, TZELEPIS G, ERDAL E, et al. SalsaNext: fast, uncertainty-aware semantic segmentation of LiDAR point clouds [C]// International Symposium on Visual Computing . San Diego: Springer, 2020: 207−222.
|
11 |
ÇICEK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation [C]// Medical Image Computing and Computer-Assisted Intervention . Athens: Springer, 2016: 424−432.
|
12 |
WANG P S, LIU Y, GUO Y X, et al O-CNN: octree-based convolutional neural networks for 3D shape analysis[J]. ACM Transactions on Graphics, 2017, 36 (4): 1- 11
|
13 |
MENG H Y, GAO L, LAI Y K, et al. VV-Net: voxel VAE net with group convolutions for point cloud segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 8499−8507.
|
14 |
LE T, DUAN Y. PointGrid: a deep network for 3D shape understanding [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 9204−9214.
|
15 |
WANG Y, SUN Y, LIU Z, et al Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2018, 38 (5): 146- 158
|
16 |
KANG Z H, LI N PyramNet: point cloud pyramid attention network and graph embedding module for classification and segmentation[J]. Australian Journal of Intelligent Information Processing Systems, 2019, 16 (2): 35- 43
|
17 |
党吉圣, 杨军 多特征融合的三维模型识别与分割[J]. 西安电子科技大学学报, 2020, 47 (4): 149- 157 DANG Jisheng, YANG Jun 3D model recognition and segmentation based on multi-feature fusion[J]. Journal of Xidian University, 2020, 47 (4): 149- 157
|
18 |
HU Q Y, YANG B, XIE L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11105−11114.
|
19 |
LIU Z J, TANG H T, LIN Y J, et al. Point-voxel CNN for efficient 3D deep learning [C]// Advances in Neural Information Processing Systems . Vancouver: MIT Press, 2019: 963−973.
|
20 |
ZHANG F H, FANG J, WAH B, et al. Deep fusionnet for point cloud semantic segmentation [C]// Proceedings of the European Conference on Computer Vision . Glasgow: Springer, 2020: 644−663.
|
21 |
LIONG V E, NGUYEN T N T, Widjaja S, et al. AMVNet: assertion-based multi-view fusion network for LiDAR semantic segmentation [EB/OL]. (2020-12-09) [2023-02-12]. https://doi.org/10.48550/arXiv.2012.04934.
|
22 |
XU J Y, ZHANG R X, DOU J, et al. RPVNet: a deep and efficient range-point-voxel fusion network for LiDAR point cloud segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 16004−16013.
|
23 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention . Munich: Springer, 2015: 234−241.
|
24 |
GRAHAM B, ENGELCKE M, MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 9224−9232.
|
25 |
杨军, 张琛. 融合双注意力机制和动态图卷积神经网络的三维点云语义分割 [EB/OL]. (2023-01-10) [2023-02-12]. https://bhxb.buaa.edu.cn/bhzk/article/doi/10.13700/j.bh.1001-5965.2022.0775.
|
26 |
ARMENI I, SENER O, ZAMIR A, et al. 3D semantic parsing of large-scale indoor spaces [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 1534−1543.
|
27 |
BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 9296−9306.
|
28 |
TATARCHENKO M, PARK J, KOLTUN V, et al. Tangent convolutions for dense prediction in 3D [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 3887−3896.
|
29 |
LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transformed points [C]// Advances in Neural Information Processing Systems . Montréal: MIT Press, 2018: 828−838.
|
30 |
LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 4558−4567.
|
31 |
ZHAO H, JIANG L, FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 5565−5573.
|
32 |
JIANG L, ZHAO H S, LIU S, et al. Hierarchical point-edge interaction network for point cloud semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 10432−10440.
|
33 |
WANG L, HUANG Y, HOU Y, et al. Graph attention convolution for point cloud semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 10296−10305.
|
34 |
AHN P, YANG J, YI E, et al Projection-based point convolution for efficient point cloud segmentation[J]. IEEE Access, 2022, 10: 15348- 15358
doi: 10.1109/ACCESS.2022.3144449
|
35 |
SHI Q, SAEED A, NICK B. Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . [s. l.]: IEEE, 2021: 1757−1767.
|
36 |
THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 6410−6419.
|
37 |
WEI M, WEI Z, ZHOU H, et al AGConv: adaptive graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (8): 9374- 9392
|
38 |
SHI H Y, LIN G S, WANG H, et al. SpSequenceNet: semantic segmentation network on 4D point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 4573–4582.
|
39 |
DANG J S, YANG J. HPGCNN: hierarchical parallel group convolutional neural networks for point clouds processing [C]// Proceedings of the Asian Conference on Computer Vision . Kyoto: Springer, 2020: 20−37.
|
40 |
MILIOTO A, VIZZO Ⅰ, BEHLEY J, et al. RangeNet++: fast and accurate LiDAR semantic segmentation [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Macau: IEEE, 2019: 4213−4220.
|
41 |
ZHANG Y, ZHOU Z, DAIID P, et al. PolarNet: an improved grid representation for online LiDAR point clouds semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 9598−9607.
|
42 |
ALONSO I, RIAZUELO L, MONTESANO L, et al 3D-MiniNet: learning a 2D representation from point clouds for fast and efficient 3D LiDAR semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5 (4): 5432- 5439
doi: 10.1109/LRA.2020.3007440
|
43 |
杨军, 李博赞 基于自注意力特征融合组卷积神经网络的三维点云语义分割[J]. 光学精密工程, 2022, 30 (7): 840- 853 YANG Jun, LI Bozan Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network[J]. Optics and Precision Engineering, 2022, 30 (7): 840- 853
doi: 10.37188/OPE.20223007.0840
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|