Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 62-69    DOI: 10.3785/j.issn.1008-973X.2025.01.006
计算机与控制工程     
基于轻量残差网络的高效半色调算法
刘登峰1,2(),陈世海1,2,郭文静1,2,柴志雷1,2
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122
2. 康养智能化技术教育部工程研究中心,江苏 无锡214122
Efficient halftone algorithm based on lightweight residual networks
Dengfeng LIU1,2(),Shihai CHEN1,2,Wenjing GUO1,2,Zhilei CHAI1,2
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
2. Engineering Research Center of Intelligent Technology for Healthcare, Ministry of Education, Wuxi 214122, China
 全文: PDF(1232 KB)   HTML
摘要:

为了解决图像半色调中处理速度慢以及半色调效果不佳的问题,提出基于轻量型残差卷积神经网络(CNN)的高效半色调算法. 为了解决原始CNN平坦性退化问题,引入噪声补偿块,为模型提供抖动依赖. 为了进一步提升模型性能,在损失函数中引入蓝噪声损失;在半色调常值灰度图像时,抑制低频分量,优化高频区域的各向异性. 实验结果表明,对比现有深度半色调方法,所提算法的参数量下降96.77%,在VOC测试集中结构相似性(SSIM)提升8.17%,峰值信噪比(PSNR)提升0.1333 dB,半色调图像具有蓝噪声特性,处理速度提升57.28%.

关键词: 残差网络半色调蓝噪声特性深度学习模型轻量化    
Abstract:

To address the issues of sluggish processing speed and substandard quality of the halftone effect in image halftoning, an efficient halftone algorithm was proposed, which relies on a lightweight residual convolutional neural network(CNN). A noise compensation block was introduced to provide the model with jitter dependencies, to address the issue of flatness degradation in the original CNN. The inclusion of blue noise loss in the loss function was implemented to further optimize the model’s performance. The low-frequency components were suppressed and the anisotropy of the high-frequency region was optimized when halftoning a constant-value grayscale image. Experimental results showed that, compared with the available deep halftone methods, the proposed algorithm exhibited a significant reduction of 96.77% in the number of parameters, the structural similarity (SSIM) improved by 8.17% and the peak signal-to-noise ratio (PSNR) improved by 0.133 3 dB in the VOC test set, the halftone images had blue noise characteristics, and the processing speed was increased by 57.28%.

Key words: residual network    halftone    blue noise characteristic    deep learning    model lightweight
收稿日期: 2023-08-18 出版日期: 2025-01-18
CLC:  TP 391  
基金资助: 国家重点研发专项计划资助项目(2022YFE0112400);国家自然科学基金青年项目(21706096);第62批中国博士后科学基金资助项目(2017M621627);江苏省博士后科研项目(1601009A);江苏省自然科学基金青年项目(BK20160162).
作者简介: 刘登峰(1980—),女,副教授,从事人工智能模式识别、智能计算系统、发酵过程建模研究. orcid.org/0000-0002-6193-6641. E-mail:liudf@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘登峰
陈世海
郭文静
柴志雷

引用本文:

刘登峰,陈世海,郭文静,柴志雷. 基于轻量残差网络的高效半色调算法[J]. 浙江大学学报(工学版), 2025, 59(1): 62-69.

Dengfeng LIU,Shihai CHEN,Wenjing GUO,Zhilei CHAI. Efficient halftone algorithm based on lightweight residual networks. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 62-69.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.006        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/62

图 1  理想蓝噪声半色调的功率谱
图 2  基于残差网络的半色调算法的模型结构
图 3  不同残差网络的构建块对比
图 4  噪声补偿块结构图
算法SSIMPSNR
Bayer有序抖动[5]0.098 120.174 1
Ostromoukhov误差扩散[24]0.110 021.133 3
DBS[25]0.092 421.037 0
RVH[14]0.161 520.700 8
本研究0.174 720.834 1
表 1  半色调算法的定量评价
图 5  不同算法的半色调效果对比
数据集Bayer有序抖动Ostromoukhov误差扩散DBSRVH本研究
SSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNR
Set5[17]0.092119.27030.089520.06230.100220.03450.122318.92580.135019.0440
Set14[18]0.110220.52570.119821.91810.109921.82660.166020.07190.180020.1359
T91[19]0.081917.14050.088417.62890.076817.48970.123216.85950.140116.9310
BSDS100[20]0.088319.53220.093720.47780.079320.30550.147719.92980.161120.0607
BSDS200[20]0.075319.41640.080020.31940.066920.13210.126719.65820.140619.7947
General100[21]0.094719.80760.095820.61280.091620.46400.129919.39960.139819.4650
Historical[22]0.151018.66130.149719.42550.122719.17020.229819.49900.241119.9650
Manga109[22]0.247822.96940.222623.29560.233123.27280.254323.28520.264423.1815
Urban100[23]0.144322.69230.161623.55670.135523.36270.214122.73400.225322.9097
表 2  5种算法在公开数据集上的测试结果
图 6  对常值灰度的半色调光谱分析(灰度为15/255)
θSSIMPSNRθSSIMPSNR
0.10.158218.05480.50.155617.5647
0.20.167819.53261.00.145316.2547
0.30.174720.8341
表 3  噪声强度对模型性能的影响
残差模块噪声模块各向异性损失PSNRSSIM
18.10000.4557
19.25520.6788
19.37210.7198
表 4  所提算法的模块消融实验结果
图 7  不同模型生成的半色调图像
算法NP/106tr/ms
Bayer有序抖动[5]0.40
Ostromoukhov误差扩散[24]38.40×10?510.00
DBS[25]2990.00
RVH[14]37.8030.06*
本研究1.2212.84*
表 5  不同算法的运行时间及参数量对比
1 FRANK T, LIU J, GAT S, et al A machine learning approach to design of aperiodic, clustered-dot halftone screens via direct binary search[J]. IEEE Transactions on Image Processing, 2022, 31: 5498- 5512
doi: 10.1109/TIP.2022.3196821
2 LAU D L, ARCE G R. Modern digital halftoning [M]. 2nd ed. Boca Raton: CRC Press, 2018.
3 ULICHNEY R A Dithering with blue noise[J]. Proceedings of the IEEE, 1988, 76 (1): 56- 79
doi: 10.1109/5.3288
4 KOPF J, COHEN-OR D, DEUSSEN O, et al Recursive Wang tiles for real-time blue noise[J]. ACM Transactions on Graphics, 2006, 25 (3): 509- 518
doi: 10.1145/1141911.1141916
5 BAYER B E An optimum method for two level rendition of continuous tone pictures[J]. IEEE International Conference on Communications, 1973, 9 (1): 26.11- 26.15
6 YI Y, LI R, YU C, et al Quality evaluation metric for greyscale error diffusion halftone images based on texture and visual characteristics[J]. Imaging Science Journal, 2017, 65 (5/6): 315- 326
7 YANG G, JIAO S, LIU J P, et al Error diffusion method with optimized weighting coefficients for binary hologram generation[J]. Applied Optics, 2019, 58 (20): 5547- 5555
doi: 10.1364/AO.58.005547
8 FUNG Y H, CHAN Y H Tone-dependent error diffusion based on an updated blue-noise model[J]. Journal of Electronic Imaging, 2016, 25 (1): 013013
doi: 10.1117/1.JEI.25.1.013013
9 CHIZHOV V, GEORGIEV I, MYSZKOWSKI K, et al Perceptual error optimization for Monte Carlo rendering[J]. ACM Transactions on Graphics, 2022, 41 (3): 1- 17
10 MAO Y, SARKAR U, BORRELL I, et al Ink drop displacement model-based direct binary search[J]. IEEE Transactions on Image Processing, 2023, 32: 3897- 3911
doi: 10.1109/TIP.2023.3283924
11 XIA M, WONG T T. Deep inverse halftoning via progressively residual learning [C]// Computer Vision–ACCV 2018 . Perth: Springer, 2019: 523–539.
12 SHAO L, ZHANG E, LI M An efficient convolutional neural network model combined with attention mechanism for inverse halftoning[J]. Electronics, 2021, 10 (13): 1574
doi: 10.3390/electronics10131574
13 JIANG H, MU Y Conditional diffusion process for inverse halftoning[J]. Advances in Neural Information Processing Systems, 2022, 35: 5498- 5509
14 XIA M, HU W, LIU X, et al. Deep halftoning with reversible binary pattern [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 14000–14009.
15 SHAO S, LI Z, ZHANG T, et al. Objects365: a large-scale, high-quality dataset for object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 8430–8439.
16 CHOI B, ALLEBACH J P Mimicking DBS halftoning via a deep learning approach[J]. Electronic Imaging, 2022, 34 (15): 158
17 AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops . Honolulu: IEEE, 2017: 126–135.
18 HUI Z, WANG X, GAO X. Fast and accurate single image super-resolution via information distillation network [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 723–731.
19 ZHANG H, WANG P, ZHANG C, et al A comparable study of CNN-based single image super-resolution for space-based imaging sensors[J]. Sensors, 2019, 19 (14): 3234
doi: 10.3390/s19143234
20 JIU M, PUSTELNIK N A deep primal-dual proximal network for image restoration[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (2): 190- 203
doi: 10.1109/JSTSP.2021.3054506
21 DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network [C]// Computer Vision–ECCV 2016 . Amsterdam: Springer, 2016: 391–407.
22 MATSUI Y, ITO K, ARAMAKI Y, et al Sketch-based Manga retrieval using Manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76: 21811- 21838
doi: 10.1007/s11042-016-4020-z
23 HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 5197–5206.
24 OSTROMOUKHOV V. A simple and efficient error-diffusion algorithm [C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques . [S.l.]: ACM, 2001: 567–572.
[1] 陈智超,杨杰,李凡,冯志成. 基于深度学习的列车运行环境感知关键算法研究综述[J]. 浙江大学学报(工学版), 2025, 59(1): 1-17.
[2] 李凡,杨杰,冯志成,陈智超,付云骁. 基于图像识别的弓网接触点检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1801-1810.
[3] 肖力,曹志刚,卢浩冉,黄志坚,蔡袁强. 基于深度学习和梯度优化的弹性超材料设计[J]. 浙江大学学报(工学版), 2024, 58(9): 1892-1901.
[4] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[5] 李林睿,王东升,范红杰. 基于法条知识的事理型类案检索方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1357-1365.
[6] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[7] 宋娟,贺龙喜,龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.
[8] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[9] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[10] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[11] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[12] 钱庆杰,余军合,战洪飞,王瑞,胡健. 基于DL-BiGRU多特征融合的注塑件尺寸预测方法[J]. 浙江大学学报(工学版), 2024, 58(3): 646-654.
[13] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[14] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.
[15] 孟月波,王博,刘光辉. 多尺度上下文引导特征消除的古塔图像分类[J]. 浙江大学学报(工学版), 2024, 58(12): 2489-2499.