计算机与控制工程 |
|
|
|
|
基于轻量残差网络的高效半色调算法 |
刘登峰1,2( ),陈世海1,2,郭文静1,2,柴志雷1,2 |
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122 2. 康养智能化技术教育部工程研究中心,江苏 无锡214122 |
|
Efficient halftone algorithm based on lightweight residual networks |
Dengfeng LIU1,2( ),Shihai CHEN1,2,Wenjing GUO1,2,Zhilei CHAI1,2 |
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China 2. Engineering Research Center of Intelligent Technology for Healthcare, Ministry of Education, Wuxi 214122, China |
引用本文:
刘登峰,陈世海,郭文静,柴志雷. 基于轻量残差网络的高效半色调算法[J]. 浙江大学学报(工学版), 2025, 59(1): 62-69.
Dengfeng LIU,Shihai CHEN,Wenjing GUO,Zhilei CHAI. Efficient halftone algorithm based on lightweight residual networks. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 62-69.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.006
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I1/62
|
1 |
FRANK T, LIU J, GAT S, et al A machine learning approach to design of aperiodic, clustered-dot halftone screens via direct binary search[J]. IEEE Transactions on Image Processing, 2022, 31: 5498- 5512
doi: 10.1109/TIP.2022.3196821
|
2 |
LAU D L, ARCE G R. Modern digital halftoning [M]. 2nd ed. Boca Raton: CRC Press, 2018.
|
3 |
ULICHNEY R A Dithering with blue noise[J]. Proceedings of the IEEE, 1988, 76 (1): 56- 79
doi: 10.1109/5.3288
|
4 |
KOPF J, COHEN-OR D, DEUSSEN O, et al Recursive Wang tiles for real-time blue noise[J]. ACM Transactions on Graphics, 2006, 25 (3): 509- 518
doi: 10.1145/1141911.1141916
|
5 |
BAYER B E An optimum method for two level rendition of continuous tone pictures[J]. IEEE International Conference on Communications, 1973, 9 (1): 26.11- 26.15
|
6 |
YI Y, LI R, YU C, et al Quality evaluation metric for greyscale error diffusion halftone images based on texture and visual characteristics[J]. Imaging Science Journal, 2017, 65 (5/6): 315- 326
|
7 |
YANG G, JIAO S, LIU J P, et al Error diffusion method with optimized weighting coefficients for binary hologram generation[J]. Applied Optics, 2019, 58 (20): 5547- 5555
doi: 10.1364/AO.58.005547
|
8 |
FUNG Y H, CHAN Y H Tone-dependent error diffusion based on an updated blue-noise model[J]. Journal of Electronic Imaging, 2016, 25 (1): 013013
doi: 10.1117/1.JEI.25.1.013013
|
9 |
CHIZHOV V, GEORGIEV I, MYSZKOWSKI K, et al Perceptual error optimization for Monte Carlo rendering[J]. ACM Transactions on Graphics, 2022, 41 (3): 1- 17
|
10 |
MAO Y, SARKAR U, BORRELL I, et al Ink drop displacement model-based direct binary search[J]. IEEE Transactions on Image Processing, 2023, 32: 3897- 3911
doi: 10.1109/TIP.2023.3283924
|
11 |
XIA M, WONG T T. Deep inverse halftoning via progressively residual learning [C]// Computer Vision–ACCV 2018 . Perth: Springer, 2019: 523–539.
|
12 |
SHAO L, ZHANG E, LI M An efficient convolutional neural network model combined with attention mechanism for inverse halftoning[J]. Electronics, 2021, 10 (13): 1574
doi: 10.3390/electronics10131574
|
13 |
JIANG H, MU Y Conditional diffusion process for inverse halftoning[J]. Advances in Neural Information Processing Systems, 2022, 35: 5498- 5509
|
14 |
XIA M, HU W, LIU X, et al. Deep halftoning with reversible binary pattern [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 14000–14009.
|
15 |
SHAO S, LI Z, ZHANG T, et al. Objects365: a large-scale, high-quality dataset for object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 8430–8439.
|
16 |
CHOI B, ALLEBACH J P Mimicking DBS halftoning via a deep learning approach[J]. Electronic Imaging, 2022, 34 (15): 158
|
17 |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops . Honolulu: IEEE, 2017: 126–135.
|
18 |
HUI Z, WANG X, GAO X. Fast and accurate single image super-resolution via information distillation network [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 723–731.
|
19 |
ZHANG H, WANG P, ZHANG C, et al A comparable study of CNN-based single image super-resolution for space-based imaging sensors[J]. Sensors, 2019, 19 (14): 3234
doi: 10.3390/s19143234
|
20 |
JIU M, PUSTELNIK N A deep primal-dual proximal network for image restoration[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (2): 190- 203
doi: 10.1109/JSTSP.2021.3054506
|
21 |
DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network [C]// Computer Vision–ECCV 2016 . Amsterdam: Springer, 2016: 391–407.
|
22 |
MATSUI Y, ITO K, ARAMAKI Y, et al Sketch-based Manga retrieval using Manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76: 21811- 21838
doi: 10.1007/s11042-016-4020-z
|
23 |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 5197–5206.
|
24 |
OSTROMOUKHOV V. A simple and efficient error-diffusion algorithm [C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques . [S.l.]: ACM, 2001: 567–572.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|