Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 49-61    DOI: 10.3785/j.issn.1008-973X.2025.01.005
计算机与控制工程     
不同情绪错误记忆的脑电微状态功能网络分析
李宜轩1(),李颖1,2,*(),肖倩1,王灵月1,2,尹宁1,2,杨硕1,2
1. 河北工业大学 生命科学与健康工程学院,河北省生物电磁与神经工程重点实验室,天津 300130
2. 河北工业大学 生命科学与健康工程学院,天津市生物电工与智能健康重点实验室,天津 300130
EEG microstate functional network analysis of different emotional false memories
Yixuan LI1(),Ying LI1,2,*(),Qian XIAO1,Lingyue WANG1,2,Ning YIN1,2,Shuo YANG1,2
1. Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
2. Tianjin Key Laboratory of Bioelectricity and Intelligent Health, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
 全文: PDF(5110 KB)   HTML
摘要:

研究情绪对错误记忆的影响,有助于探究大脑的记忆加工机制. 采集不同情绪状态下错误记忆脑电信号,由微状态分析得到各情绪组模板图(微状态1~5),根据微状态拟合结果划分各情绪组记忆再认4个阶段(早期加工、熟悉性加工、情节性回想加工和后提取加工)的时间段,在时间覆盖率有显著差异的微状态内构建相位锁值脑功能网络. 从时间、空间2个角度分析脑电信号,结果表明各情绪组的大脑加工模式从情节回想加工阶段出现不同. 积极组在前额区活跃的微状态3、5中持续停留且脑功能性强;消极组在微状态1中持续停留且脑功能性差;中性组在中央区活跃的微状态3、4中持续停留. 积极组的时间和脑力资源多用于情节联想和推理,消极组的大脑处于低迷状态的时间长,中性组的时间和脑力资源多用于信息整合.

关键词: 脑电图(EEG)情绪错误记忆微状态脑功能网络    
Abstract:

The research on the influence of emotions on false memory helps explore the memory-processing mechanisms of the brain. The EEG signals of false memories under different emotion states were collected. The microstate analysis was used to obtain the template maps for each emotion group named from microstate 1 to microstate 5, the time segmentation of the four stages of memory recognition (early processing, familiar processing, episodic recall processing and post-extraction processing) for the emotion groups were divided according to the microstate fitting results, and the phase-locked brain functional networks were constructed in microstates with significant difference in time coverage. The results analyzed of EEG signals from both the temporal perspective and the spatial perspective show that the brain processing patterns of the emotion groups begin to appear different from the episode recall processing stage. The positive group remains in the active microstates 3 and 5 of the prefrontal region and has strong brain function, the negative group remains in microstate 1 and has poor brain function, and the neutral group remains in the active microstates 3 and 4 of the central region. The positive group spends more time and mental resources on plot association and reasoning, while the negative group stays depressed for a longer time, and the neutral group devotes more time and mental resources to information integration.

Key words: electroencephalogram (EEG)    emotions    false memory    microstate    brain functional network
收稿日期: 2023-11-16 出版日期: 2025-01-18
CLC:  R 318  
基金资助: 国家自然科学基金资助项目(51707055, 51877067).
通讯作者: 李颖     E-mail: 2821563467@qq.com;yli@hebut.edu.cn
作者简介: 李宜轩(1996—),女,硕士生,从事智能医学与健康工程研究. orcid.org/0000-0002-0233-0228. E-mail:2821563467@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李宜轩
李颖
肖倩
王灵月
尹宁
杨硕

引用本文:

李宜轩,李颖,肖倩,王灵月,尹宁,杨硕. 不同情绪错误记忆的脑电微状态功能网络分析[J]. 浙江大学学报(工学版), 2025, 59(1): 49-61.

Yixuan LI,Ying LI,Qian XIAO,Lingyue WANG,Ning YIN,Shuo YANG. EEG microstate functional network analysis of different emotional false memories. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 49-61.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.005        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/49

图 1  迪斯-罗迪格-麦克德莫特范式实验流程图
图 2  错误记忆信号聚类效果与聚类数的关系图
图 3  微状态模板地形图
图 4  各情绪组错误记忆脑电信号的微状态拟合结果
图 5  微状态持续时间占比统计结果
图 6  脑区划分示意图
图 7  不同情绪组3种微状态的关联矩阵
图 8  不同情绪组在不同阈值下的全局效率
图 9  不同情绪组3种微状态的二值矩阵
图 10  不同情绪组3种微状态的脑网络图
微状态情绪组Ki
前额区额区中央区颞区顶区枕区
1积极39.832.67.319.033.841.8
消极27.220.83.33.018.330.2
中性24.219.34.512.018.830.0
3积极26.822.120.79.826.725.6
消极21.614.921.220.319.117.2
中性25.618.711.117.010.811.2
5积极31.612.08.410.825.130.6
消极34.417.611.211.326.230.0
中性18.212.17.517.514.417.8
表 1  各情绪组在不同微状态的度分布
微状态情绪组前额额区中央区颞区顶区枕区
1积极FP1、AF3F3、F5P1、PO3、PO5、PO7CB1、CB2
消极FPZ、AF4FZ、F2P5、P7、PO8OZ、CB1、CB2
中性AF4F4、F6、F8P3、PO3、PO5O2、CB1、CB2
3积极AF3、AF4FZ、F1、F3、F4C2、CP2、CP4P4
消极AF3FCZCZ、C6、CP2、CP4、CP6TP7P4、P6
中性AF3FZ、F1、F2、FC3C1、CP6T8、TP8P8
5积极FPZ、FP1、FP2AF4FZ、F2P5、PO5O1、CB2
消极FPZ、FP1、FP2AF4F4、F6、F8P8、PO8O2
中性FPZFP2AF4F1、F4、F6P6、POZOZ、O1
表 2  不同微状态和不同情绪组的前10个脑网络关键节点
微状态组间比较MDSEP95%CI
下限上限
1积极组vs消极组6.708*2.3380.0270.64912.766
积极组vs中性组3.2752.5000.611?3.2029.752
消极组vs中性组?3.4332.5000.550?9.9103.044
3积极组vs消极组8.0285.1360.413?5.70121.756
积极组vs中性组14.173*4.2410.0122.83725.510
消极组vs中性组6.1455.0180.715?7.26819.558
5积极组vs消极组?3.5183.5170.987?12.7065.669
积极组vs中性组6.4133.8140.325?3.55216.378
消极组vs中性组9.9313.9080.058?0.28020.142
表 3  节点度单因素方差分析事后比较
微状态组间比较MDSEP95%CI
下限上限
1积极组vs消极组0.279*0.0660.0010.1080.450
积极组vs中性组0.1000.0680.468?0.0760.277
消极组vs中性组?0.179*0.0680.047?0.355?0.002
3积极组vs消极组0.1450.0890.366?0.0920.382
积极组vs中性组0.247*0.0790.0180.0380.457
消极组vs中性组0.1020.0870.772?0.1290.333
5积极组vs消极组?0.0580.0480.711?0.1830.067
积极组vs中性组0.0730.0520.519?0.0620.208
消极组vs中性组0.1310.0530.067?0.0070.270
表 4  局部效率单因素方差分析事后比较
微状态组间比较MDSEP95%CI
下限上限
1积极组vs消极组0.189*0.0600.0130.0350.344
积极组vs中性组0.0730.0640.789?0.0920.239
消极组vs中性组?0.1160.0640.248?0.282?0.050
3积极组vs消极组0.1510.1010.460?0.1190.421
积极组vs中性组0.322*0.0920.0090.0750.568
消极组vs中性组0.1700.1010.333?0.1000.440
5积极组vs消极组?0.0770.0700.837?0.2580.104
积极组vs中性组0.1530.0750.167?0.0440.350
消极组vs中性组0.230*0.0770.0220.0290.431
表 5  全局效率单因素方差分析事后比较
1 ROEDIGER H L, MCDERMOTT K B Creating false memories: remembering words not presented in lists[J]. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1995, 21 (4): 803- 814
doi: 10.1037/0278-7393.21.4.803
2 KRUMHUBER E G, SKORA L I, HILL H C H, et al The role of facial movements in emotion recognition[J]. Nature Reviews Psychology, 2023, 2: 283- 296
doi: 10.1038/s44159-023-00172-1
3 倪召兵, 李颖, 赵营鸽, 等 基于脑功能网络的混合情绪因素对错误记忆影响的研究[J]. 生物医学工程学杂志, 2021, 38 (5): 828- 837
NI Zhaobing, LI Ying, ZHAO Yingge, et al Research on the influence of mixed emotional factors on false memory based on brain functional network[J]. Journal of Biomedical Engineering, 2021, 38 (5): 828- 837
doi: 10.7507/1001-5515.202008042
4 KERSTEN A W, EARLES J L, VERNON L L, et al Negative emotion increases false memory for person/action conjunctions[J]. Cognition and Emotion, 2021, 35 (4): 664- 679
doi: 10.1080/02699931.2021.1891024
5 RIEGEL M, WYPYCH M, WIERZBA M, et al Emotion schema effects on associative memory differ across emotion categories at the behavioural, physiological and neural level[J]. Neuropsychologia, 2022, 172: 108257
doi: 10.1016/j.neuropsychologia.2022.108257
6 YÜVRÜK E, KAPUCU A False (or biased) memory: emotion and working memory capacity effects in the DRM paradigm[J]. Memory and Cognition, 2022, 50: 1443- 1463
doi: 10.3758/s13421-022-01298-y
7 LENTOOR A G Cognitive and neural mechanisms underlying false memories: misinformation, distortion or erroneous configuration?[J]. AIMS Neuroscience, 2023, 10 (3): 255- 268
doi: 10.3934/Neuroscience.2023020
8 GOLDMANN R E, SULLIVAN A L, DROLLER D B J, et al Late frontal brain potentials distinguish true and false recognition[J]. Neuroreport, 2003, 14 (13): 1717- 1720
doi: 10.1097/00001756-200309150-00012
9 CURRAN T Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity[J]. Neuropsychologia, 2004, 42 (8): 1088- 1106
doi: 10.1016/j.neuropsychologia.2003.12.011
10 MOEZZI B, PRATTI L M, HORDACRE B, et al Characterization of young and old adult brains: an EEG functional connectivity analysis[J]. Neuroscience, 2019, 422: 230- 239
doi: 10.1016/j.neuroscience.2019.08.038
11 KLADOS M A, PARASKEVOPOULOS E, PANDRIA N, et al The impact of math anxiety on working memory: a cortical activations and cortical functional connectivity EEG study[J]. IEEE Access, 2019, 7: 15027- 15039
doi: 10.1109/ACCESS.2019.2892808
12 FANG F, POTTER T, NGUYEN T, et al Dynamic reorganization of the cortical functional brain network in affective processing and cognitive reappraisal[J]. International Journal of Neural Systems, 2020, 30 (10): 2050051
doi: 10.1142/S0129065720500513
13 LEHMANN D, OZAKI H, PAL I EEG alpha map series: brain micro-states by space-oriented adaptive segmentation[J]. Electroencephalography and Clinical Neurophysiology, 1987, 67 (3): 271- 288
doi: 10.1016/0013-4694(87)90025-3
14 LIANG J, LI Y, ZHANG Z, et al Sound gaps boost emotional audiovisual integration independent of attention: evidence from an ERP study[J]. Biological Psychology, 2022, 168: 108246
doi: 10.1016/j.biopsycho.2021.108246
15 GUAN K, ZHANG Z, CHAI X, et al EEG based dynamic functional connectivity analysis in mental workload tasks with different types of information[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 632- 642
doi: 10.1109/TNSRE.2022.3156546
16 HUA W, LI Y Electroencephalography based microstate functional connectivity analysis in emotional cognitive reappraisal combined with happy music[J]. Brain Sciences, 2023, 13 (4): 554
doi: 10.3390/brainsci13040554
17 STADLER M A, ROEDIGER H L, MCDERMOTT K B Norms for word lists that create false memories[J]. Memory and Cognition, 1999, 27: 494- 500
doi: 10.3758/BF03211543
18 王一牛, 周立明, 罗跃嘉 汉语情感词系统的初步编制及评定[J]. 中国心理卫生杂志, 2008, 22 (8): 608- 612
WANG Yiniu, ZHOU Liming, LUO Yuejia The pilot establishment and evaluation of Chinese affective words system[J]. Chinese Mental Health Journal, 2008, 22 (8): 608- 612
doi: 10.3321/j.issn:1000-6729.2008.08.014
19 刘红丽. 基于EEG的抑郁症和双相障碍识别研究[D]. 北京: 北京工业大学, 2021: 1–57.
LIU Hongli. Research on recognition of depression and bipolar disorder based on EEG [D]. Beijing: Beijing University of Technology, 2021: 1–57.
20 POULSEN A T, PEDRONI A, LANGER N, et al. Microstate EEGlab toolbox: an introductory guide [EB/OL]. (2018–03–27)[2023–11–06]. https://www.biorxiv.org/content/10.1101/289850v1.full.pdf.
21 MURRAY M M, BRUNET D, MICHEL C M Topographic ERP analyses: a step-by-step tutorial review[J]. Brain Topography, 2008, 20 (4): 249- 264
doi: 10.1007/s10548-008-0054-5
22 WANG Z, CHEN Z, ZHANG J EEG emotion recognition based on PLV-rich-club dynamic brain function network[J]. Applied Intelligence, 2023, 53: 17327- 17345
doi: 10.1007/s10489-022-04366-7
23 吴敏, 王化宁, 张羿阳, 等 情绪面孔识别状态下抑郁症患者大脑微状态的差异性研究[J]. 西安交通大学学报, 2019, 53 (4): 143- 149
WU Min, WANG Huaning, ZHANG Yiyang, et al A difference study of brain microstates for depression using recognition of emotional faces[J]. Journal of Xi’an Jiaotong University, 2019, 53 (4): 143- 149
doi: 10.7652/xjtuxb201904021
24 FERNANDES R, SOLIMUN U, ARYANDANI A, et al Comparison of cluster validity index using integrated cluster analysis with structural equation modeling the War-PLS approach[J]. Journal of Theoretical and Applied Information Technology, 2021, 99 (18): 4208- 4219
25 BRANDEIS D, LEHMANN D, MICHEL C M, et al Mapping event-related brain potential microstates to sentence endings[J]. Brain Topography, 1995, 8: 145- 159
doi: 10.1007/BF01199778
26 PEGNA A J, KHATEB A, SPINELLI L, et al Unravelling the cerebral dynamics of mental imagery[J]. Human Brain Mapping, 1997, 5 (6): 410- 421
doi: 10.1002/(SICI)1097-0193(1997)5:6<410::AID-HBM2>3.0.CO;2-6
27 田丰, 张文睿, 李颖洁 立体与非立体虚拟现实影片情绪唤醒差异的电生理特性[J]. 生物医学工程学杂志, 2022, 39 (1): 56- 66
TIAN Feng, ZHANG Wenrui, LI Yingjie Electrophysiological characteristics of emotion arousal difference between stereoscopic and non-stereoscopic virtual reality films[J]. Journal of Biomedical Engineering, 2022, 39 (1): 56- 66
doi: 10.7507/1001-5515.202101010
28 MAGOSSO E, URSINO M The sensory-cognitive interplay: insights into neural mechanisms and circuits[J]. Journal of Integrative Neuroscience, 2022, 22 (1): 3
doi: 10.31083/j.jin2201003
29 DENG L, STANLEY M L, MONGE Z A, et al Age-related compensatory reconfiguration of PFC connections during episodic memory retrieval[J]. Cerebral Cortex, 2021, 31 (2): 717- 730
doi: 10.1093/cercor/bhaa192
30 CHO C, YOO H J, MIN J, et al Changes in medial prefrontal cortex mediate effects of heart rate variability biofeedback on positive emotional memory biases[J]. Applied Psychophysiology and Biofeedback, 2023, 48 (2): 135- 147
doi: 10.1007/s10484-023-09579-1
31 FILIPPINI M, BORRA D, URSINO M, et al Decoding sensorimotor information from superior parietal lobule of macaque via convolutional neural networks[J]. Neural Networks, 2022, 151: 276- 294
doi: 10.1016/j.neunet.2022.03.044
32 HAVE L, QUESQUE F, PRIOT A E, et al Feeling without localizing: exploring tactile misperception in a patient with uncommon parietal left brain damage[J]. Frontiers in Human Neuroscience, 2023, 17: 1167489
doi: 10.3389/fnhum.2023.1167489
33 刘凤英, 姚志刚 错误记忆年老化的认知与神经机制[J]. 应用心理学, 2018, 24 (1): 41- 51
LIU Fengying, YAO Zhigang The cognitive and neural mechanisms of false memory with age[J]. Chinese Journal of Applied Psychology, 2018, 24 (1): 41- 51
doi: 10.3969/j.issn.1006-6020.2018.01.005
34 蓝文威, 陈晨, 张金, 等 联合脑电信号与虚拟技术的大脑情绪状态的半球不对称性研究[J]. 中国生物医学工程学报, 2021, 40 (3): 266- 271
LAN Wenwei, CHEN Chen, ZHANG Jin, et al Asymmetry of brain emotional state based on EEG and VR techniques[J]. Chinese Journal of Biomedical Engineering, 2021, 40 (3): 266- 271
doi: 10.3969/j.issn.0258-8021.2021.03.02
35 甘霖, 田佳宜, 许敏鹏, 等 基于神经认知科学的音乐对情绪诱发的机制研究综述[J]. 复旦学报: 自然科学版, 2021, 60 (3): 340- 346
GAN Lin, TIAN Jiayi, XU Minpeng, et al A review of the mechanism of music inducing emotion based on neurocognitive science[J]. Journal of Fudan University: Natural Science, 2021, 60 (3): 340- 346
36 王潇, 吴国榕, 吴欣然, 等 语言功能偏侧化及其与利手、功能连接的关系[J]. 心理科学进展, 2020, 28 (5): 778- 789
WANG Xiao, WU Guorong, WU Xinran, et al Language lateralization, handedness and functional connectivity[J]. Advances in Psychological Science, 2020, 28 (5): 778- 789
doi: 10.3724/SP.J.1042.2020.00778
[1] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[2] 刘近贞,陈飞,熊慧. 多尺度残差网络模型的开放式电阻抗成像算法[J]. 浙江大学学报(工学版), 2022, 56(9): 1789-1795.
[3] 金国美,佘青山,张敏,马玉良,张建海,孙明旭. 多尺度补偿传递熵的皮层肌肉功能耦合方法[J]. 浙江大学学报(工学版), 2022, 56(6): 1152-1158, 1256.
[4] 刘清清,周志勇,范国华,钱旭升,胡冀苏,陈光强,戴亚康. 基于3D scSE-UNet的肝脏CT图像半监督学习分割方法[J]. 浙江大学学报(工学版), 2021, 55(11): 2033-2044.
[5] 马振宏,刘振,殷胜勇,马榕蔚,闫克平. 高压纳秒脉冲电场消融黑色素瘤细胞实验研究[J]. 浙江大学学报(工学版), 2021, 55(6): 1168-1174.
[6] 熊慧,景昭,刘近贞. 新型经颅磁刺激三层-8字形线圈的结构设计[J]. 浙江大学学报(工学版), 2021, 55(4): 793-800.
[7] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[8] 童基均,柏雁捷,潘剑威,杨佳锋,蒋路茸. 基于变分模态分解的心冲击信号和呼吸信号分离[J]. 浙江大学学报(工学版), 2020, 54(10): 2058-2066.
[9] 洪炎佳,孟铁豹,黎浩江,刘立志,李立,徐硕瑀,郭圣文. 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报(工学版), 2020, 54(3): 566-573.
[10] 杨熠,钱旭升,周志勇,朱建兵,沈钧康,戴亚康. 采用影像组学的肾肿瘤组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(12): 2381-2388.
[11] 吴谦,王平. 肺癌呼吸标志物筛选及其生物信息学分析[J]. 浙江大学学报(工学版), 2019, 53(12): 2389-2395.
[12] 杨婧,耿辰,王海林,纪建松,戴亚康. 基于DenseNet的低分辨CT影像肺腺癌组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(6): 1164-1170.
[13] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
[14] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1214-1220.
[15] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2432-2438.