机械工程 |
|
|
|
|
生物3D打印——从形似到神似 |
贺永( ),高庆,刘安,孙苗,傅建中 |
浙江大学 流体动力与机电系统国家重点实验室 机械工程学院,浙江 杭州 310027 |
|
3D bioprinting: from structure to function |
Yong HE( ),Qing GAO,An LIU,Miao SUN,Jian-zhong FU |
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
Yong HE,Qing GAO,An LIU,Miao SUN,Jian-zhong FU. 3D bioprinting: from structure to function. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 407-419.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.001
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I3/407
|
1 |
BASSOLI E, GATTO A, IULIANO L, et al 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal, 2007, 13 (3): 148- 155
doi: 10.1108/13552540710750898
|
2 |
VENTOLA CL Medical applications for 3D printing: current and projected uses[J]. Pharmacy and Therapeutics, 2014, 39 (10): 704
|
3 |
LIU Y, GAO Q, DU S, et al Fabrication of cerebral aneurysm simulator with a desktop 3D printer[J]. Scientific Reports, 2017, 7: 44301
doi: 10.1038/srep44301
|
4 |
HE Y, XUE G, FU J Fabrication of low cost soft tissue prostheses with the desktop 3D printer[J]. Scientific Reports, 2014, 4: 6973
|
5 |
邵惠锋, 贺永, 傅建中 增材制造可降解人工骨的研究进展: 从外形定制到性能定制[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1035- 1057 SHAO Hui-feng, HE Yong, FU Jian-zhong Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1035- 1057
|
6 |
SHAO H, YANG X, HE Y, et al Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior[J]. Biofabrication, 2015, 7 (3): 035010
doi: 10.1088/1758-5090/7/3/035010
|
7 |
SHAO H, HE Y, FU J, et al 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36 (6): 1495- 1503
doi: 10.1016/j.jeurceramsoc.2016.01.010
|
8 |
SHAO H, KE X, LIU A, et al Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect[J]. Biofabrication, 2017, 9 (2): 025003
doi: 10.1088/1758-5090/aa663c
|
9 |
董鹤, 方玉婷, 王丹, 等 国内外器官捐献现状与思考[J]. 护理学报, 2017, 24 (11): 23- 26 DONG He, FANG Yu-ting, WANG Dan, et al Current situation and thinking of organ donation at home and abroad[J]. Journal of Nursing (China), 2017, 24 (11): 23- 26
|
10 |
杨颖, 黄海, 邱鸿钟 我国公民逝世后器官捐献意愿调查及影响因素研究[J]. 中国医院, 2014, 18 (3): 18- 19 YANG Ying, HUANG Hai, QIU Hong-zhong Study on the willingness and influence factors of organ donation after death of citizens in China[J]. Chinese Hospitals, 2014, 18 (3): 18- 19
doi: 10.3969/j.issn.1671-0592.2014.03.009
|
11 |
OZBOLAT I T, YU Y Bioprinting toward organ fabrication: challenges and future trends[J]. IEEE Transactions on Biomedical Engineering, 2013, 60 (3): 691- 699
doi: 10.1109/TBME.2013.2243912
|
12 |
MANDRYCKY C, WANG Z, KIM K, et al 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances, 2016, 34 (4): 422- 434
doi: 10.1016/j.biotechadv.2015.12.011
|
13 |
HE Y, YANG F F, ZHAO H M, et al Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports, 2016, 6: 29977
doi: 10.1038/srep29977
|
14 |
甲基丙烯酸酐化水凝胶(GelMA, EFL-GM系列)[R/OL].[2018-08-08]. http://www.imrsz.com/page-31-11.html.
|
15 |
TUAN R Adult mesenchymal stem cells and cell-based tissue engineering[J]. Arthritis Research and Therapy, 2003, 5 (1): 32- 45
doi: 10.1186/ar614
|
16 |
XU T, GREGORY C Viability and electrophysiology of neural cell structures generated by the inkjet printing method[J]. Biomaterials, 2006, 27 (19): 3580- 8
|
17 |
XU C, ZHANG M, HUANG Y, et al Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink[J]. Langmuir, 2014, 30 (30): 9130- 9138
doi: 10.1021/la501430x
|
18 |
XU C, CHAI W, HUANG Y, et al Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes[J]. Biotechnology and Bioengineering, 2012, 109 (12): 3152- 3160
|
19 |
CUI X, BOLAND T Human microvasculature fabrication using thermal inkjet printing technology[J]. Biomaterials, 2009, 30 (31): 6221- 6227
doi: 10.1016/j.biomaterials.2009.07.056
|
20 |
KIM J D, CHOI J S, KIM B S, et al Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates[J]. Polymer, 2010, 51 (10): 2147- 2154
doi: 10.1016/j.polymer.2010.03.038
|
21 |
CUI X, DEAN D, RUGGERI Z Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells[J]. Biotechnology and Bioengineering, 2010, 106 (6): 963- 969
doi: 10.1002/bit.22762
|
22 |
PIQUE A, CHRISEY D B, AUYEUNG R C Y, et al A novel laser transfer process for direct writing of electronic and sensor materials[J]. Applied Physics A, 1999, 69 (1): S279- S284
|
23 |
ODDE D J, RENN M J Laser‐guided direct writing of living cells[J]. Biotechnology and Bioengineering, 2000, 67 (3): 312- 318
doi: 10.1002/(ISSN)1097-0290
|
24 |
RINGEISEN B R, KIM H, BARRON J A, et al Laser printing of pluripotent embryonal carcinoma cells[J]. Tissue Engineering, 2004, 10 (3/4): 483- 491
doi: 10.1089/107632704323061843
|
25 |
SCHIELE N R, CORR D T, HUANG Y, et al Laser-based direct-write techniques for cell printing[J]. Biofabrication, 2010, 2 (3): 032001
doi: 10.1088/1758-5082/2/3/032001
|
26 |
BARRON J A, WU P, LADOUCEUR H D, et al Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns[J]. Biomedical Microdevices, 2004, 6 (2): 139- 147
doi: 10.1023/B:BMMD.0000031751.67267.9f
|
27 |
KOCH L, DEIWICK A, SCHLIE S, et al Skin tissue generation by laser cell printing[J]. Biotechnology and bioengineering, 2012, 109 (7): 1855- 1863
doi: 10.1002/bit.v109.7
|
28 |
BARRON J A, KRIZMAN D B, RINGEISEN B R Laser printing of single cells: statistical analysis, cell viability, and stress[J]. Annals of biomedical engineering, 2005, 33 (2): 121- 130
doi: 10.1007/s10439-005-8971-x
|
29 |
GRUENE M, PFLAUM M, HESS C, et al Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions[J]. Tissue Engineering Part C: Methods, 2011, 17 (10): 973- 982
doi: 10.1089/ten.tec.2011.0185
|
30 |
GUILLEMOT F, SOUQUET A, CATROS S, et al High-throughput laser printing of cells and biomaterials for tissue engineering[J]. Acta Biomaterialia, 2010, 6 (7): 2494- 2500
doi: 10.1016/j.actbio.2009.09.029
|
31 |
LANDERS R, HUBNER U, SCHMELZEISEN R, et al Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J]. Biomaterials, 2002, 23 (23): 4437- 4447
doi: 10.1016/S0142-9612(02)00139-4
|
32 |
OZBOLAT I T, HOSPODIUK M Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76: 321- 343
doi: 10.1016/j.biomaterials.2015.10.076
|
33 |
COLOSI C, SHIN S R, MANOHARAN V, et al Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink[J]. Advanced Materials, 2016, 28 (4): 677- 684
doi: 10.1002/adma.201503310
|
34 |
TRACHTENBERG J E, PLACONE J K, SMITH B T, et al Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1771- 1780
doi: 10.1021/acsbiomaterials.6b00026
|
35 |
FAULKNER-JONES A, FYFE C, CORNELISSEN D J, et al Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D[J]. Biofabrication, 2015, 7 (4): 044102
doi: 10.1088/1758-5090/7/4/044102
|
36 |
HO C T, LIN R Z, CHEN R J, et al Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue[J]. Lab on a Chip, 2013, 13 (18): 3578- 3587
doi: 10.1039/c3lc50402f
|
37 |
GAUVIN R, CHEN Y C, LEE J W, et al Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography[J]. Biomaterials, 2012, 33 (15): 3824- 3834
doi: 10.1016/j.biomaterials.2012.01.048
|
38 |
WANG Z, ABDULLA R, PARKER B, et al A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks[J]. Biofabrication, 2015, 7 (4): 045009
doi: 10.1088/1758-5090/7/4/045009
|
39 |
ZHANG A P, QU X, SOMAN P, et al Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography[J]. Advanced Materials, 2012, 24 (31): 4266- 4270
doi: 10.1002/adma.v24.31
|
40 |
LIN H, ZHANG D, ALEXANDER P G, et al Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture[J]. Biomaterials, 2013, 34 (2): 331- 339
doi: 10.1016/j.biomaterials.2012.09.048
|
41 |
HRIBAR K C, SOMAN P, WARNER J, et al Light-assisted direct-write of 3D functional biomaterials[J]. Lab on a Chip, 2014, 14 (2): 268- 275
doi: 10.1039/C3LC50634G
|
42 |
THOMAS D J, JESSOP Z M, WHITAKER L S. 3D bioprinting for reconstructive surgery: techniques and applications [M]. Combridge: Woodhead Publishing, 2017.
|
43 |
生物3D打印机(EFL-BP系列)[R].[2018-08-08]. http://www.imrsz.com/page-31-13.html.
|
44 |
ZHAO H, CHEN Y, SHAO L, et al Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle[J]. Small, 2018, 14 (39): 1802630
doi: 10.1002/smll.v14.39
|
45 |
SHAO L, GAO Q, ZHAO H, et al Fiber-based mini tissue with morphology-controllable GelMA microfibers[J]. Small, 2018, 1802187
doi: 10.1002/smll.201802187
|
46 |
TATMAN P D, GERULL W, SWEENEY-EASTER S, et al Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches[J]. Tissue Engineering Part B: Reviews, 2015, 21 (6): 543- 559
doi: 10.1089/ten.teb.2015.0142
|
47 |
KUNDU J, ShiM J H, JANG J, et al An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9 (11): 1286- 1297
doi: 10.1002/term.v9.11
|
48 |
YOU F, WU X, ZHU N, et al 3D printing of porous cell-laden hydrogel constructs for potential applications in cartilage tissue engineering[J]. ACS Biomaterials Science and Engineering, 2016, 2 (7): 1200- 1210
doi: 10.1021/acsbiomaterials.6b00258
|
49 |
CUI X, BREITENKAMP K, FINN M G, et al Direct human cartilage repair using three-dimensional bioprinting technology[J]. Tissue Engineering Part A, 2012, 18 (11/12): 1304- 1312
doi: 10.1089/ten.tea.2011.0543
|
50 |
NARAYANAN L K, HUEBNER P, FISHER M B, et al 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1732- 1742
doi: 10.1021/acsbiomaterials.6b00196
|
51 |
RHEE S, PUETZER J L, MASON B N, et al 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1800- 1805
doi: 10.1021/acsbiomaterials.6b00288
|
52 |
ARMSTRONG J P K, BURKE M, CARTER B M, et al 3D bioprinting using a templated porous bioink[J]. Advanced Healthcare Materials, 2016, 5 (14): 1724- 1730
doi: 10.1002/adhm.201600022
|
53 |
KANG H W, LEE S J, KO I K, et al A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nature Biotechnology, 2016, 34 (3): 312
doi: 10.1038/nbt.3413
|
54 |
MARKSTEDT K, MANTAS A, TOURNIER I, et al 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J]. Biomacromolecules, 2015, 16 (5): 1489- 1496
doi: 10.1021/acs.biomac.5b00188
|
55 |
LEE J S, HONG J M, JUNG J W, et al. 3D printing of composite tissue with complex shape applied to ear regeneration[J]. Biofabrication, 2014, 6(2): 024103.
|
56 |
MANNOOR M S, JIANG Z, JAMES T, et al 3D printed bionic ears[J]. Nano Letters, 2013, 13 (6): 2634- 2639
doi: 10.1021/nl4007744
|
57 |
LEE V, SINGH G, TRASATTI J P, et al Design and fabrication of human skin by three-dimensional bioprinting[J]. Tissue Engineering Part C: Methods, 2013, 20 (6): 473- 484
|
58 |
POURCHET L J, THEPOT A, ALBOUY M, et al Human skin 3D bioprinting using scaffold-free approach[J]. Advanced healthcare materials, 2017, 6 (4): 1601101
doi: 10.1002/adhm.201601101
|
59 |
SKARDAL A, MACK D, KAPETANOVIC E, et al Bioprinted amniotic fluid‐derived stem cells accelerate healing of large skin wounds[J]. Stem Cells Translational Medicine, 2012, 1 (11): 792- 802
doi: 10.5966/sctm.2012-0088
|
60 |
MICHAEL S, SORG H, PECK C T, et al Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice[J]. PLOS ONE, 2013, 8 (3): e57741
doi: 10.1371/journal.pone.0057741
|
61 |
VELASQUILLO C, GALUE E A, RODRIQUEZ L, et al Skin 3D bioprinting. Applications in cosmetology[J]. Journal of Cosmetics, Dermatological Sciences and Applications, 2013, 3 (1): 85
doi: 10.4236/jcdsa.2013.31A012
|
62 |
LEE W, DEBASITIS J C, LEE V K, et al Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication[J]. Biomaterials, 2009, 30 (8): 1587- 1595
doi: 10.1016/j.biomaterials.2008.12.009
|
63 |
CHRISTENSEN K, XU C, CHAI W, et al. Freeform inkjet printing of cellular structures with bifurcations[J]. Biotechnology and Bioengineering, 2015, 112(5): 1047-1055.
|
64 |
XIONG R, ZHANG Z, CHAI W, et al Freeform drop-on-demand laser printing of 3D alginate and cellular constructs[J]. Biofabrication, 2015, 7 (4): 045011
doi: 10.1088/1758-5090/7/4/045011
|
65 |
TABRIZ A G, HERMIDA M A, LESLIE N R, et al Three-dimensional bioprinting of complex cell laden alginate hydrogel structures[J]. Biofabrication, 2015, 7 (4): 045012
doi: 10.1088/1758-5090/7/4/045012
|
66 |
ZHU W, QU X, ZHU J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials, 2017, 124: 106-115.
|
67 |
MILLER J S, STEVENS K R, YANG M T, et al Rapid casting of patterned vascular networks for perfusable engineered 3D tissues[J]. Nature Materials, 2012, 11 (9): 768
doi: 10.1038/nmat3357
|
68 |
LEE V K, KIM D Y, NGO H, et al. Creating perfused functional vascular channels using 3D bio-printing technology[J]. Biomaterials, 2014, 35(28): 8092-8102.
|
69 |
BERTASSONI L E, CARDOSO J C, MANOHARAN V, et al Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels[J]. Biofabrication, 2014, 6 (2): 024105
doi: 10.1088/1758-5082/6/2/024105
|
70 |
KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, et al Three-dimensional bioprinting of thick vascularized tissues[J]. Proceedings of the National Academy of Sciences, 2016, 113 (12): 3179- 3184
doi: 10.1073/pnas.1521342113
|
71 |
GAO Q, HE Y, FU J, et al Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery[J]. Biomaterials, 2015, 61: 203- 215
doi: 10.1016/j.biomaterials.2015.05.031
|
72 |
GAO Q, LIU Z, LIN Z, et al 3D bioprinting of vessel-like structures with multilevel fluidic channels[J]. ACS biomaterials science and engineering, 2017, 3 (3): 399- 408
doi: 10.1021/acsbiomaterials.6b00643
|
73 |
GROLMAN J M, ZHANG D, SMITH A M, et al Rapid 3D extrusion of synthetic tumor microenvironments[J]. Advanced Materials, 2015, 27 (37): 5512- 5517
doi: 10.1002/adma.201501729
|
74 |
ZHANG Y S, DUCHAMP M, OKLU R, et al Bioprinting the cancer microenvironment[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1710- 1721
doi: 10.1021/acsbiomaterials.6b00246
|
75 |
DAI X, MA C, LAN Q, et al 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility[J]. Biofabrication, 2016, 8 (4): 045005
doi: 10.1088/1758-5090/8/4/045005
|
76 |
LEE V K, DAI G, ZOU H, et al. Generation of 3-D glioblastoma-vascular niche using 3-D bioprinting [C] // 201541st Annual Northeast Biomedical Engineering Conference (NEBEC). Troy: IEEE, 2015: 1-2.
|
77 |
XU F, CELLI J, RIZVI I, et al A three‐dimensional in vitro ovarian cancer coculture model using a high‐throughput cell patterning platform[J]. Biotechnology journal, 2011, 6 (2): 204- 212
doi: 10.1002/biot.v6.2
|
78 |
ZHAO Y, YAO R, OUYANG L, et al Three-dimensional printing of Hela cells for cervical tumor model in vitro[J]. Biofabrication, 2014, 6 (3): 035001
doi: 10.1088/1758-5082/6/3/035001
|
79 |
HOCKADAY L A, KANG K H, COLANGELO N W, et al Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds[J]. Biofabrication, 2012, 4 (3): 035005
doi: 10.1088/1758-5082/4/3/035005
|
80 |
GOU M, QU X, ZHU W, et al Bio-inspired detoxification using 3D-printed hydrogel nanocomposites[J]. Nature communications, 2014, 5: 3774
doi: 10.1038/ncomms4774
|
81 |
OUYANG L, YAO R, MAO S, et al Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation[J]. Biofabrication, 2015, 7 (4): 044101
doi: 10.1088/1758-5090/7/4/044101
|
82 |
TSANG V L, CHEN A A, CHO L M, et al Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels[J]. The FASEB Journal, 2007, 21 (3): 790- 801
doi: 10.1096/fj.06-7117com
|
83 |
LEWIS P L, SHAH R N 3D printing for liver tissue engineering: current approaches and future challenges[J]. Current Transplantation Reports, 2016, 3 (1): 100- 108
doi: 10.1007/s40472-016-0084-y
|
84 |
DUAN B, HOCKADAY L A, KANG K H, et al 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels[J]. Journal of biomedical materials research Part A, 2013, 101 (5): 1255- 1264
|
85 |
HINTON T J, JALLERAT Q, PALCHESKO R N, et al Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science advances, 2015, 1 (9): e1500758
doi: 10.1126/sciadv.1500758
|
86 |
MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
|
87 |
LOZANO R, STEVENS L, THOMPSON B C, et al 3D printing of layered brain-like structures using peptide modified gellan gum substrates[J]. Biomaterials, 2015, 67: 264- 273
doi: 10.1016/j.biomaterials.2015.07.022
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|